Электричество для начинающих

Николай Кладов
        1. Основные данные.
1.1. Электричество проистекает от того что на разных концах возникает разница потенциалов.
Потенциал появляется от избытка или недостатка электронов.

1.2.Для понимания процесса электричества надо знать что такое:
 - НАПРЯЖЕНИЕ  это разница потенциалов измеряется в вольтах (дома  в розетке между двумя клеммами - 220 вольт)
 - ЭЛЕКТРИЧЕСКИЙ ТОК это направленное движение электронов по проводнику.Считается что электроны "бегут" туда где их нет.Ток  возникает если замкнуть электрическую цепь между контактами с разным потенциалом, измеряется в амперах.
 - СОПРОТИВЛЕНИЕ  это свойство проводника оказывать препятствие движению тока по проводнику.
Сопротивление зависит:
  - от сечения проводника (чем больше сечение тем меньше сопротивление)
общее сопротивление проводника зависит также от его длины.
  - его температуры ( чем меньше температура металла тем меньше сопротивление) и
  - материала из которого он сделан (лучше всего проводят ток золото,затем серебро, медь и алюминий)
Сопротивление измеряется в омах.
Ток в проводнике находится в прямой зависимости от напряжения и в обратной зависимости от сопротивления цепи - Закон Ома.
Ток в амперах  вычисляется делением напряжения в вольтах на сопротивление в омах.
   МОЩНОСТЬ - определяется как произведение напряжения на ток. Измеряется в ваттах.
Бытовой потребитель (утюг) мощностью в 1000 ватт (один киловатт ) при напряжении в 220 вольт дает ток 4,545 ампер. Сопротивление цепи у такого потребителя будет 48,8 ом. 
         
       2. Электрический ток.
2.1. Электрический ток бывает двух видов:
 постоянный - (  DC     )  и переменный  - ( AC  ).
При этом имеется ввиду его величина и направление движения.
Постоянный ток имеет постоянное направление,  а величина зависит от сопротивления цепи.Источниками постоянного тока являются например аккумуляторы и батарейки. Постоянный ток используется во многих электронных схемах, в машинах, его преимущества - он легко управляем и более безопасен для человека, чем переменный. Но,у него большие потери при передачи на расстояния. Постоянный ток используется при двухпроводной схеме - ток (условно) бежит от минуса к плюсу.
2.2.Переменный ток это обычно трехфазный. Трехпроводная (трехфазная) схема самая распространенная.  Она представляет из себя три изолированных провода идущих от источника тока. Напряжение между любыми двумя  линейными проводами ( линейное напряжение)среднее 380 вольт.
При этом потенциал и направление тока на каждом проводе колеблется и меняется на противоположное с частотой в  50 герц т.е 50 раз в секунду. (это можно заметить если посмотреть на лампочку.)
2.3. При трехфазной системе используется четвертый нейтральный (нулевой) провод. Его потенциал равен нулю - потенциалу земли. Между любым из фазных проводов  и нулевым проводом разница потенциалов (фазное напряжение) 220 вольт.Это напряжение бытовой сети и всех бытовых приборов.
Сейчас в сети используется еще пятый заземляющий провод (желто-зеленый)он присоединяется на корпус.
   
2.4. Ток может двигаться в проводнике, в газах, в электролите и даже в вакууме.
Что происходит при движении тока по проводнику?
Много чего происходит. Например. 1. электроэнергия передается на расстояние.
 2. возникает электрическое поле, которое взаимодействует с магнитным и электромагнитным полем - это используется в эл. машинах.
 3. при движении электротока проводник нагревается.Это используется  с пользой, например, в утюге. Но других случаях этого не нужно. Например при передаче тока на большие расстояния это потери. Для того чтобы избежать потерь используют большое и очень большое напряжение.
 4. в электротехнике вместе с эл.током передается сигнал или информация.


2.5. Ток по проводнику бежит аналогично тому как течет река. Т.е.если один проводник
разделяется в цепи на два или более то, сумма токов в разделенных проводниках равна току в общем.
Это называется правило Киргофа.

           3. Электрические машины и устройства.
3.1. ТРАНСФОРМАТОРЫ. Это электрическое устройство для преобразования  напряжения (без изменения мощности). Трансформатор имеет замкнутый сердечник и две катушки (первичная и вторичная) намотанные на  этот сердечник.  Работает он так. Ток,протекая по первичной катушке, наводит в сердечнике магнитную индукцию, которая в свою очередь возбуждает вторичную катушку и наводит в ней  ток(при замкнутой цепи). При этом напряжение меняется в зависимости от числа витков на первичной и вторичной обмотке (коэффициент трансформации)
Чем больше витков - тем больше напряжение.
Конечно число витков должно соответствовать рабочему напряжению, а сечение провода витков - рабочему току.
Трансформироваться может только напряжение переменного тока.

3.2.ЭЛЕКТРОДВИГАТЕЛИ. Электродвигатель имеет статор он неподвижен - выполнен вместе с корпусом, и ротор - вращающаяся на подшипниках подвижная цилиндрическая часть.
3.3 Асинхронный трехфазный электродвигатель переменного тока.
Имеет три обмотки (катушки) уложенные в пазы статора. Номинальное напряжение каждой обмотки 220 вольт. Каждая обмотка имеет начало и конец. Обычно (при соединении звездой) три конца обмоток соединены вместе в центральный узел это выполняется в клеммнике. На три других свободных конца (начало обмотки) подается(подключается) через пусковую аппаратуру трехфазное напряжение - 380 вольт.
При этом в статоре возникает вращающееся электромагнитное поле.
Ротор асинхронного электродвигателя выполнен в виде короткозамкнутых стержней (беличье колесо). Это называется коротко замкнутый ротор. В роторе возникают большие токи, которые взаимодействуют со полем статора и происходит
асинхронное вращение ротора,которое состоит в том что ротор постоянно отстает или догоняет вращение поля статора- здесь используется выражение "скольжения".
3.4 Нормальная работа асинхронного двигателя с короткозамкнутым ротором это работа с нормальным скольжением.
Ток в его обмотке и частота вращения обычно не регулируются.
Но иногда используются частотные регуляторы скорости вращения асинхронных двигателей.
3.5 При торможении ротора ( в следствии например большой нагрузки) происходит отставание ротора, разрыв связи электрического поля и ток в обмотке статора растет. Это может привести к выходу двигателя из строя. Для защиты от этого используются ограничители по току,отключатели нагрузки (автоматы и тепловая защита)
3.6. В двигателе ток во всех обмотках должен быть номинальным и одинаковым. Выход из строя двигателя может произойти при витковом замыкании в одной обмотке. Это определяется
токоизмерительными клещами по разнице токов. Такой двигатель надо перематывать.
3.7. Асинхронный двигатель может иметь фазный ротор.В его ротор вмонтирована обмотка, которая через коллектор и щетки снимается и подключается к реостату (регулируемому сопротивлению). Цель - управлять током в роторе и регулировать вращение двигателя.

  4. Как работает электрическая лампочка накаливания.
Внутри запаянной стеклянной колбы находится газ Азот. Он отличается тем что абсолютно инертен и не вступает в реакцию даже при больших температурах. Внутри колбы в среде Азота помещена вольфрамовая спиралька -нить накаливания. Вольфрам имеет среди других металлов самую высокую температуру плавления (3000гр) При пропускании тока через спираль
она нагревается и начинает испускать свет.

  5. Как работает люминесцентная лампа.
Это стеклянная колба с откаченным воздухом и парами ртути и люминофором на стенках. чтобы лампа светилась. нужно ее зажечь. Для этого нужно высокое напряжение. Для этого используют или дроссель в виде катушки или электронную схему.
Для зажигания через дроссель используется стартер, который включает дроссель, а потом размыкает его. При этом возникает большое напряжение.