Бывший новый русский по имени Сергей усомнился в моих способностях проектировать магические кладки. "Мне всё нужно доказать!" - твердил он. Проверить решил меня так: спросил дату рождения. Я ответил, что 12 апреля 1950 года. "Вот и хорошо!"- воскликнул приятель. И попросил использовать числа 12, 4 и 1950 для проекта кладки. Первые два числа явно не вязались с огромным третьим. Я ему подал такую идею: 12 и 4 - это соотношение длины секции к ее ширине, то есть 12/4=3. А пусть 1950 - это вес каждого блока в килограммах. Он подумал и сказал: "Хорошо! Пусть будет так".
Поскольку у меня под рукой была книга "Магические кладки", то обнаружил вариант, в котором ширина В=28, а длина L=84. Отношение как раз три!
Немного поиграв программой на языке Yabasic, довольно быстро получил подходящие параметры, что записаны во второй строке:
rem РАЗМЕРЫ В см, ВЕС В кг
B=28:L=84:l=28:b=12:l1=21:b1=16:Br=170:ro=0.0024
Lr=Br/B*L
l0=Br/B*l:b0=Br/B*b:l10=Br/B*l1:b10=Br/B*b1
print "Lr = ";:print Lr
hmax=int(b0):hmin=l0/3:
if hmin<>int(hmin) then hmin=int(hmin)+1:fi
print "h_max= ";:print hmax
print "h_min= ";:print hmin
K=B^2/l/b
for h=hmin to hmax step .1
G0=l0*b0*h*ro
if G0>10000 then print h,G0/1000;:print " (tonn)":fi
if G0<=10000 then print h,G0:fi
next h
print "INPUT hr ";:input hr
Gr=Br^2*hr*ro/K*10
Gr1=int(Gr)
if Gr-Gr1<=0.5 then Gr=Gr1:fi
if Gr-Gr1>0.5 then Gr=Gr1+1:fi
Gr=Gr/10
K1=Br^2*hr*ro/Gr
print "K=";:print K
print "Br=";:print Br
print "hr=";:print hr
print "ro=";:print ro
print "Gr=";:print Gr
print "K1=";:print K1
print l0 using "###.###";:print " x ";
print b0 using "###.###";:print " x ";
print hr using "###.###";:print " TIPE 1"
print l10 using "###.###";:print " x ";
print b10 using "###.###";:print " x ";
print hr using "###.###";:print " TIPE 2"
После запуска получились такие значения:
Lr = 510
h_max= 72
h_min= 57
..............
..............
65.4 1944.06
65.5 1947.03
-------------
65.6 1950.01
-------------
65.7 1952.98
65.8 1955.95
65.9 1958.92
..............
..............
Прога дала довольно внушительную таблицу: пары значений высоты блоков в сантиметрах и веса каждого блока в килограммах. Запросила желательную высоту. Я набил на клавиатуре 65.6, потому что вес оказался равным 1950.01 кг. Это же с огромной точностью мой год рождения!. После этого программа рассчитала нужные элементы магической кладки:
K=2.33333
Br=170
hr=65.6
ro=0.0024
Gr=1950
K1=2.33334
170.000 x 72.857 x 65.600 TIPE 1
127.500 x 97.143 x 65.600 TIPE 2
То есть, если ширина стенки 170 см, длина 510 см, то высота блоков равна 65.6 см.
Критерий математической кладки K=2.33333, а точнее 7/3. Тот же критерий, но на основе реальных параметров, оказался равным K1=2.33334. То есть точность, можно сказать, зашкаливает! Сергея результаты убедили. Хотя, если честно говорить, мне с датой рождения просто повезло. Родись я на день раньше или позже, то вероятней всего так гладко не получилось.
Интересно вот что: новый русский в свое время окончил МГУ, причем не что-нибудь, а Мехмат! То есть в математике оказался ого го какой! Но наука тогда была в упадке, многие профессора торговали тряпками, напильниками, иранской сантехникой. Он же организовал серьезный бизнес по сбыту кондиционеров по всей России. Купил участок в 70 соток на месте обанкротившейся мебельной фабрики. Построил приличный дворец в три этажа и только, вот, постамента ему не хватало.
Когда я показал красиво оформленный проект кладки, он попросил кратко объяснить теоретический принцип формирования столь интересной симметричной структуры. Коротко я ему рассказал историю кладок, начиная с 1828 года. Как проектировщики методом проб и ошибок выискивали размеры либо каменных, либо бетонных массивов. Чтобы обеспечить перекрытия швов в пределах курса и между курсами, приходилось использовать от четырех до шести типов блоков. При этом их веса оказывались самыми разными. Всем было давно ясно, что самый идеальный вариант - это применять один вид блоков, вес которого соответствует грузоподъемности крана. Тогда и равнопрочность конструкции наилучшая, и срок возведения минимальный. Показал ему разработки Владимира Ивановича Швея, который в 1940 году опубликовал в виде "Указаний". У него было разработаны структуры уже из трех-четырех типов блоков. И веса не очень сильно отличались.
Теперь по поводу кладки, что на рисунке. Это вид сверху. Тонкими линиями показан курс, состоящий из одного ряда, толстыми линиями - смежный курс, состоящий из двух рядов. Как получены все целочисленные размеры? В любой магической кладке основой являются три попарно простых числа. Целочисленная длина L - это всегда произведения упомянутых трёх чисел. Причём для одно-двухрядной кладки наибольшее из трёх чисел является суммой остальных двух. Новый русский быстро сообразил, что числа эти a=3, b=4, c=7. Потому что 3+4=7 и 3*4*7=84. Параметры а, b ,с - попарно простые, поскольку у трех пар: 3 и 4, 3 и 7, 4 и 7 нет иных делителей, кроме единицы. Но ему было неясно главное - как определены размеры двух видов блоков, причем такие, что 28*12=21*16 ? А это ведь главное в магической кладке! Это обеспечивает равенство весов всех блоков!
На рисунке же все реальные параметры даны в сантиметрах и килограммах.
25 мая 2021 г.