Неоник Смита

Вот так выглядят катушка резонанса и катушка связи в аппликации генератора Дональда Смита.

Первичная обмотка содержит 5 витков акустического кабеля площадью сечения около 10 кв. мм на 2 дюймовой подвижной ПВХ трубе. Задача первичной обмотки – создать переменное магнитное поле.
Два конденсатора  CMR1A402104K (по 0,1мкф 4000в) включены параллельно первичной катушке, они дают общую емкость 0,2мкф. По данным производителя, электрическая прочность диэлектрика в них 6000в
Приемная катушка изготовлена из стандартной 3 дюймовой спирали BACKER& WILIAMSON общей индуктивностью 32мкГн, длина которой 10 дюймов, имеющей 40 витков проводом диаметром 2мм. Она разделена пополам и сделан отвод от середины для заземления. Имеются также радиочастотные диоды, включенные по два параллельно по схеме двухполупериодного выпрямителя со средней точкой. Т. е. высоковольтные диоды подключены к концам катушки связи для выпрямления свч колебаний в ней и заряду от неё второго высоковольтного конденсатора. Который имеет ёмкость 8 мкф и рабочее напряжение 2000 в.  Вторичная цепь сохраняет свою особенность, на резонансной частоте она обладает исключительной проводимостью для заряда, ведь длина каждой из половин вторичной приемной обмотки здесь должна быть в идеале равна четверти длины волны возмущения магнитного поля, создаваемого первичной катушкой. Это значит, что заряд, проходящий по вторичной цепи, приобретает максимальный потенциал в крайних точках провода катушки ровно через четверть периода.Хотя вторичная цепь содержит диоды она является низкочастотным фильтром дроссль в котором или обмотка понижающего тр. не мешает вч колебаниям, но снимает энергию гармоники близкой к 60 Гц с контура Л2 С2. Поэтому требуются такие большие ёмкости С2. По Л2 в рабочем режиме проходят активные токи низкой частоты с напряжением около киловольта, но за пределами катушки напряжённость магнитного поля и частота далеко превосходят параметры внутри неё.
Вот схема аппликации установки получения СЕ на неоновом трансформаторе.
 
Роль генератора прямоугольных импульсов в ней выполняет неоник и разрядник. Исследователь на форуме СЕ объясняет работу этой схемы таким образом.
«Рассказываю смысл употребления некоторых элементов схемы исходя из собственного положительного опыта. Так называемый неоник вместе с разрядником - это совершенно случайно примененные элементы, случайно заработавшие в паре и обеспечившие положительный эффект. Эти два изделия на самом деле обеспечивают лишь правильную цепь ударного возбуждения контура L1C1. Поэтому абсолютно все равно, последовательно или параллельно подключен разрядник, лишь бы неоник правильно срабатывал на разряд - переходил при перегрузке в высокоимпедансное состояние. Далее контур L1C1 начинает работать в режиме ударного возбуждения и 35 кГц в этой связи - это не частота работы неоника, а период накачки существенно более высокочастотного (в 6-7 раз) устройства - контура L1C1. Применение неоника в сочетании с разрядником - это просто неумелое схемотехническое решение. Надо делать устройство, которое периодически (в нашем случае с частотой повторения 35 кГц) импульсами длительностью менее 1 мкс подзаряжает конденсатор С1, которой потом в течение нескольких периодов поддерживает свободно затухающие колебания контура L1C1. Подстройка контура L1C1 под частоту повторения ударных импульсов сводится лишь к устранению фазовых искажений между частотой свободных колебаний контура и частотой накачки. Слабая связь между катушками L1, L2 и L3 является вынужденной и обусловлена тем, что при нагрузке на катушках L2 и L3 начинает неизбежно уходить частота свободных колебаний контура L1C1, что приведет к расстройке синхронизации с накачивающими импульсами. Как только мы создадим обратную связь по частоте, от контура L1C1 к генератору накачки, так сразу получим устройство, мощность которого не зависит от нагрузки и которое в такой схемотехнической реализации больше известно как генератор Тариеля Капанадзе. Источник импульсов постоянного тока должен отдать в нагрузку некую порцию энергии, а затем перестать шунтировать контур L1C1, т.е. сопротивление источника должно стать "бесконечно" большим. Как я уже говорил, у Дональда Смита положительный эффект ударного возбуждения контура получился совершенно случайно, путем подбора разрядника и определенного типа неоника. Непонимание этого факта приводит к совершенно пустой трате времени по подбору неоника по непонятным критериям, в то время как надо решать задачу именно ударного возбуждения контура. Сам импульс должен быть меньше 1 мксек, а вот частота контура L1C1 должна быть кратной периоду колебаний генератора накачки. Так, например, если вы сделали устройство накачки с периодом колебаний, соответствующим 30 кГц, то очень удобной частотой резонанса контура L1C1 будет 210 кГц (7-ая гармоника), для импульсов 35 кГц соответственно 245 кГц. Эти частоты мы и встречаем в оригинале авторской работы. Можно, конечно, добиться нужного результата и с трансформатором на выходе неоника, но моя схема для эксперимента получилась очень гибкой, регулируются выходное напряжение, частота и скважность.   Все предельно просто, воздействие на параллельный контур L1C1 осуществляется через конденсатор, подключенный последовательно к импульсному источнику высокого напряжения. Напряжение известно, время воздействия известно, высчитываем емкость. Никакого короткого замыкания в принципе быть не может. Теперь о величине длительности накачки. Предположим, что частота собственных колебаний контура L1C1 250 кГц. Это я предположил только для того, чтобы период колебаний составил 4 мкс. Очевидно, что потенциал верхнего вывода контура L1C1 по отношению к нижнему выводу изменяется по синусоидальному затухающему закону, то есть принимает положительные и отрицательные значения в диапазоне от - до + максимального значения потенциала накачки. Чтобы не заморачиваться мостовыми схемами будем воздействовать на контур только в тот момент, когда потенциал верхнего вывода контура растет от 0 до + максимального значения. Очевидно, что это время будет равно 1 мкс. И так, генератор накачки должен один раз в 30 мкс выдавать синфазный импульс накачки контура длительностью 1 мкс. Смогут ли приведенные Вами схемы сделать это? Очевидно, что нет. Что делать? Первый путь, можно создать цифровой генератор накачки с периодом 30 мкс (35 кГц) и длительностью импульса накачки 1 мкс. Возможно ли это технически на сегодняшний день? Более чем. Второй путь - возиться со схемами аналогового неоника и разрядника, и мучиться с их тонкими настройками. Лично у меня путь создания цифрового генератора занял времени раз в 10 меньше, чем возня с неониками. Естественно, все легко реализуется на транзисторах. И так, представляем схему (ниже по тексту) слева направо: источник постоянного напряжения 1500 вольт - ключевой элемент VT1 на транзисторе - конденсатор накачки C2 - ключевой элемент V2 на транзисторе, это еще не все. К точке соединения ключевого элемента VT1 и конденсатора накачки C2 присоединен на общий провод ключевой элемент VT3, к точке соединения ключевого элемента VT2 и конденсатора накачки C2 присоединен на общий провод ключевой элемент V4. Я еще между ключевым элементом VT2 и контуром L1C1 ставлю диод VD1, это предохраняет транзистор от пробоя. Схема крайне избыточная, но очень удобная в практической работе, потом упростите, когда достигните нужного результата. Считаем, что термин открыт, обозначает низкое сопротивление ключевого элемента (далее - ключа), термин закрыт - обозначает высокое сопротивление ключа.
 
  И так, исходное состояние конденсатор накачки разряжен, ключи VT1 и VT2 закрыты, ключи VT3 и VT4 открыты. Наступает момент начала накачки, ключи VT3 и VT4 закрываем, ключи VT1 и VT2 открываем. Контур L1C1 в момент прохождения через 0 оказывается подключенным через конденсатор накачки C2 к источнику питания. Через 1 мкс закрываются ключи VT1 и VT2, переводя источник накачки в высокоимпедансное состояние. Контур уходит в свободные колебания. Если бы делали накачку обычным импульсным блоком питания, то нам пришлось бы решать вопрос, что делать с заряженным конденсатором накачки. Попытка выключить импульсный источник питания привела бы к обратному токовому удару по контуру, попытка оставить все как есть привела бы к токовому удару из контура. В обоих случаях имеем условия для ограничения амплитуды и для срыва колебаний контура. Посему выход только один, нужно перевести генератор накачки в высокоимпедансное состояние. Еще через 1 мкс открываем ключи VT3 и VT4 и разряжаем конденсатор накачки C2 на общий провод, примерно через 30 мкс повторяем все снова».
В цель этого исследования не входит задача получения аппликации или оригинального генератора СЕ, но работа практической схемы, приведённая выше хорошо иллюстрирует  теоретические выводы предыдущей статьи "Жёсткость колебаний". Если исключить возможность подпитки катушки колебательного контура от статического электричества атмосферы, то нужно признать, что энергия в систему всё же поступает, скорее всего, в катушку, раз нет других явных приёмных компонентов. Потенциал источника отличен от потенциала земли. Потенциал источника велик, поскольку система работает на высоких напряжениях. Если учесть что атмосферное электричество, строго говоря, не статично, а существует постоянный ток, то теоретически существует возможность привязки уже к этому току мощных магнитных систем БТГ.


Рецензии