К более глубокой переработке пищи

Результаты дальнейшего изучения учеными изменений симбиотического мышино-микробного организма (см. врезку «Проверено на мышах») блестяще подтвердили гипотезу о том, что микробиота тучных индивидуумов способствует более глубокой переработке пищи. Сравнение образцов ДНК стула тучных и нормальных мышей показало, что микробиом тучных мышей насыщен генами ферментов, позволяющих более эффективно разлагать полисахариды. Кишечник тучных мышей содержал большие количества конечных продуктов ферментации — соединений уксусной и масляной кислот, что указывает на более глубокую переработку компонентов пищи. Калориметрический (от слова «калории»!) анализ образцов мышиного стула подтвердил это: стул ob/ob-мышей содержал меньшее число калорий, чем у мышей дикого типа, которые не так полно усваивали энергию из пищи.

Проверено на мышах
Параллельно в той же лаборатории проводились эксперименты на лабораторных мышах, несущих мутацию в гене лептина — «гормона сытости», белка, который синтезируется в клетках жировой ткани и вкладывает свою лепту в формирование чувства насыщения. Мыши, у которых повреждены обе копии этого гена, едят на 70% больше, чем дикий тип, со всеми вытекающими из этого последствиями. А содержание Firmicutes в их кишечнике в полтора раза выше, чем у гетерозиготных линий, с только одной бракованной аллелью (ob/+), и гомозиготных по нормальному гену линий дикого типа (+/+).
Влияние микрофлоры на обмен веществ ее «хозяина» исследователи проверили на еще одной модели — гнотобиотических мышах. Таких животных, с момента рождения живущих в стерильных камерах и ни разу в жизни не встречавшихся ни с одним микробом, используют в биомедицинских исследованиях не часто. Абсолютная стерильность в мышатнике, крольчатнике и тем более козьем хлеву — дело дорогое и хлопотное, а после встречи с первым же микробом или вирусом бедняги или умрут, или станут непригодными к дальнейшим экспериментам. Что происходит у гнотобиотов с иммунной системой — отдельная история, а едят они за троих и при этом — кожа да кости из-за отсутствия микробного компонента пищеварения.
После пересадки микрофлоры от тучных (ob/ob) доноров мыши-гнотобиоты за две недели растолстели почти в полтора раза (на 47%). Те, которых «засеяли» микрофлорой от доноров дикого типа (+/+) с нормальным весом, поправились только на 27%.

Помимо важной информации о «микробной» составляющей ожирения авторам удалось показать принципиальную схожесть микрофлор страдающих ожирением людей и мышей, что открывает новые перспективы в исследовании проблемы избыточного веса, а возможно, и разрешения этой проблемы путем «пересадки» здоровой микрофлоры или ее формирования у пациентов, страдающих ожирением.


И с истощением
То, что микробиота может управлять метаболизмом хозяина, уже не вызывает сомнения. Исследования лаборатории Гордона, посвященные проблеме излишнего веса, позволили перекинуть мостик к лечению метаболических заболеваний. Среди них такие виды общего истощения, поражающие детей от года до четырех лет в бедных странах с тропическим климатом, как маразмус (к маразму это слово имеет лишь лингвистическое отношение: греч. marasmoz дословно означает истощение, угасание) и квашиоркор (на языке одного из племен Ганы kwashiorkor — «красный мальчик»). Возникновение заболеваний связывают с недостатком белков и витаминов при переходе от грудного вскармливания на взрослую пищу. Но заболевания выборочно поражают детей, чьи братья и сестры не испытывали никаких проблем с переходом на традиционный для данного региона рацион. Исследования показали, что кишечная микрофлора больных детей разительно отличается от микрофлоры их родителей, а также от микрофлоры здоровых братьев и сестер. Прежде всего отмечалось практически полное отсутствие в кишечной популяции Bacteroidetes и доминирование редких видов, относящихся к типам Proteobacteria и Fusobacteria. После того как больных детей (аккуратно, чтобы не передозировать!) откармливали усиленно-белковой пищей, их микробиота становилась похожей на нормальную, такую, как у родственников, с преобладанием Bactеroidetes и Firmicutes.

Исследования последних лет не только коренным образом изменили сложившиеся представления о кишечной микрофлоре человека, но и способствовали появлению концепции, рассматривающей микробиоту кишечника как дополнительный многоклеточный «орган» человека. Орган, состоящий из различных линий клеток, способных общаться как между собой, так и с организмом хозяина. Орган, перераспределяющий энергетические потоки, осуществляющий важные физиологические реакции, изменяющийся под воздействием среды и самовосстанавливающийся при изменениях, вызванных внешними условиями. Продолжение исследования «бактериального органа» может и должно привести к пониманию законов его функционирования, раскрытию его тонких связей с организмом хозяина и, как следствие, к возникновению новых методов борьбы с болезнями человека путем целенаправленного лечения дисфункций обеих составляющих метаорганизма.

Статья опубликована в журнале «Популярная механика» (№4, Апрель 2008).


Рецензии