Стекло НЕ текло и НЕБУдит!!
С Превеликой Благодарностью к исследователям данной темы, кузЪниц размещает в нАших дневниках их исследования !! ::
Полина Фокина
август 2017.
Правда ли, что стекло со временем деформируется и «стекает» вниз?
Зачем я это узнал?
правда или миф
Физика
Химия
Наука
Иван Сизов
Простите за пунктуацию
Обычное оконное стекло по своему строению не кристаллическое вещество, а жидкость, только очень вязкая. Лишь при сильном нагревании стекло начинает заметно течь. При этом температуры плавления, которая характеризует тела кристаллического строения, у стекла не существует: размягчение по мере повышения температуры происходит постепенно. Вещества с подобными свойствами так и называются — стеклообразные, или просто стёкла.
Однако до сегодняшнего дня никто не замечал, чтобы оконное стекло стекало в сторону подоконника. Если бы стекло хоть в малейшей степени было текучим, люди не могли бы строить современные мощные оптические телескопы, такие, например, как самый крупный в мире телескоп в чилийской пустыне Атакама, названный «Очень большим оптическим». Диаметр его зеркала 8,2 м. Точность шлифовки зеркала исключительно высока, малейшие деформации стекла недопустимы.
С другой стороны, при исследовании средневековых витражей, изготовленных из цветных стёкол, выяснилось: в нижней части они толще, чем в верхней. Некоторые учёные сделали вывод, что это следствие очень медленного, на протяжении многих веков, течения стекла под действием собственного веса, и даже предложили использовать данное свойство для установления времени изготовления старинных стёкол. У химиков существовало поверье, что длинные стеклянные трубки и палочки нельзя долго хранить в вертикальном положении, так как они постепенно изгибаются. Об этом можно было прочитать ещё в начале XX в. в книге известного немецкого учёного, лауреата Нобелевской премии по химии Вильгельма Оствальда (1853—1932) «Физико-химические исследования».
Английский исследователь Роберт Джон Рэлей (1875—1947), сын знаменитого физика, Нобелевского лауреата Джона Уильяма Рэлея, решил проверить эти утверждения экспериментально. Такая проверка обычно связана с измерением вязкости: зная вязкость, можно рассчитать величину деформации, например, за 10 или 100 лет.
Вязкость — свойство жидкости (или газа) оказывать сопротивление перемещению отдельных слоёв друг относительно друга, а также перемещению твёрдого тела, помещённого в жидкость. В Международной системе единиц (СИ) вязкость имеет размерность Па•с, но на практике распространена внесистемная единица вязкости пуаз (П): 1 П = 0,1 Па•с. Она названа в честь французского физика Жана Луи Пуазейля (1799—1869), который вывел формулу для объёма жидкости V, протекающей за время г по трубе с гладкими стенками длиной l и диаметром R при разнице давлений на концах трубы р: V= prtR^4/8hl, где h — вязкость жидкости.
Однако измерить вязкость стекла при комнатной температуре Рэлей не мог. Оценки, основанные на определении вязкости разогретых выше 500 °С
стёкол, дают для 20 °С значение 1021 П. Для сравнения: вязкость воды при 20 °С равна 0,01 П, глицерина — 15 П, смолы — примерно 108 П. Отсюда следует, что стекло в 10 трлн. раз более вязкая жидкость, чем смола.
В 1923 г. Рэлей провёл следующий опыт. Он взял стеклянный стержень длиной около 1 м и диаметром 5 мм, поместил его в горизонтальном положении на два штыря, вбитых в кирпичную стену, так, чтобы стержень опирался на них только своими концами. К центру стержня был подвешен груз массой 300 г. (Как потом выяснилось, эта нагрузка составляет примерно треть от максимальной: точно такой же стержень ломался от нагрузки чуть больше 1 кг.) Пол тяжестью груза стержень сразу прогнулся на 28 мм в центральной части. И в течение семи лет это значение практически не менялось. К 1930 г., когда опыт завершился, провисание стержня под нагрузкой увеличилось ещё всего на 1 мм, причём это изменение в положении груза относительно стены произошло в первые три года и было вызвано скорее всего деформацией самой стены.
О результатах этого необычного эксперимента Рэлей написал в статье, которую озаглавил «Могут ли стеклянные трубки и стержни изгибаться под действием собственного веса?». Она была опубликована в журнале «Nature» («Природа») в 1930 г. Любопытно отметить, что фамилия автора статьи приведена без инициалов, в отличие от имён других авторов в том же номере. И это не опечатка: учёный был лордом. Этот титул Рэлей унаследовал от отца, которому он был пожалован за выдающиеся научные достижения. А лорды-учёные подписывали свои статьи без имени.
Но самое интересное произошло ровно через два месяца после публикации Рэлея. В том же журнале и точно под таким же названием была напечатана статья другого учёного — К. А. Спенсера. Оказалось, он проводил аналогичный эксперимент, с той лишь разницей, что занимался этим делом не для удовлетворения собственного любопытства, а по долгу службы: учёный работал в известной американской фирме «Дженерал Электрик» в лаборатории технологии стекла. Вместо стержня Спенсер использовал прямую стеклянную трубку длиной 1,1 м и диаметром 1 см при толщине стенок 1 мм. Нагрузка в его опыте была более солидной — 885 г, что приближалось к пределу прочности трубки.
Спенсер начал опыт в 1924 г., и трудно сказать, сколько бы он продолжался, если бы исследователь не прочитал статью Рэлея. После этого его терпение не выдержало, хотелось сравнить свои результаты с опубликованными. Итак, через шесть лет после начала опыта Спенсер снял груз. На этот раз изменения были налицо: трубка провисла в центре на 9 мм.
При оценке результатов этого опыта не следует забывать, что нагрузка была близка к предельной и в десятки раз превышала вес самой трубки. Да и опыт продолжался немалое время.
А главное — более поздние эксперименты показали, что подобная деформация не является результатом вязкого течения стекла.
Это доказал тот же Спенсер. Он намотал тонкие стеклянные нити на трубку диаметром 2 см и выдержал их в таком состоянии в течение длительного времени при небольшом подогреве. Когда нити сняли с трубки, они оказались изогнутыми по дуге радиусом около 60 см. Однако когда их поместили на поверхность ртути, где практически нет трения, нити стали выпрямляться — сначала быстро, потом медленнее. Если бы деформация была результатом течения стекла, нити никогда бы не выпрямились!
Причину остаточной деформации стекла выяснили лишь в начале 50-х гг. Оказывается, в нём под влиянием нагрузки происходит медленная диффузия катионов Na+, которых в обычном стекле много. После снятия нагрузки эти катионы постепенно возвращаются к исходному положению, и в конце концов стеклянное изделие вновь принимает прежнюю форму.
Итак, опыты дали однозначный результат: стекло не течёт под нагрузкой и тем более под действием собственного веса.
Почему же тогда стеклянные трубки действительно нередко имели заметный изгиб, а старинные стёкла утолщены в нижней части?
Спенсер нашёл этому довольно правдоподобное объяснение. До того как в самом начале 20-х гг. XX в. был
введён машинный способ вытягивания стеклянных трубок, эту работу делали вручную. Но и самый искусный стеклодув не мог получить идеально прямую трубку длиной до 1 м и более. В лаборатории стеклянные трубки хранили (да и сейчас часто хранят) в вертикальном положении в специальных стойках где-нибудь за шкафом в углу. Химики, разумеется, старались выбирать для себя трубки поровнее, и таким образом происходила естественная отбраковка изогнутых трубок. Так появился (и даже вошёл в некоторые учебники) миф о самоизгибании трубок.
Теперь несколько слов о средневековых витражах. Здесь причина неравномерной толщины стекла ещё интереснее, и связана она со старинной технологией изготовления оконных стёкол. Искусный стеклодув набирал на конец трубки большой, килограмма на четыре, кусок размягчённого стекла и выдувал из него пузырь, который затем сплющивал. Получался на удивление однородный (для ручной работы) диск диаметром метра полтора, с наплывом по краям. Из этого диска и нарезали (от центра к краям) узкие стёкла для витражей. С одной стороны (там, где был край диска) они были немного толще, и при установке такого куска в оконный переплёт его, как правило, размешали толстой частью вниз. Спустя столетия, когда старинная технология изготовления оконного стекла была давно забыта, возникла мысль, что утолщение внизу стекла — это результат его стекания.
*Плавление — процесс переходя твёрдого вещества в жидкость. Обратный процесс называют кристаллизацией из жидкой фазы (расплава).
Источник: Мир Энциклопедий Аванта+
Если вы еще сомневаетесь, то вот дополнительные аргументы, опровергающие миф:
Если бы эффект наблюдался, то все дошедшие до наших дней античные, а также современные большие телескопы, не работали бы из-за постепенного искривления линз
Если бы эффект наблюдался, то древнеегипетское и древнеримское стекло за тысячи лет превратилось бы в бесформенную массу
По расчетам бразильского профессора Занотто, характерное время, за которое можно наблюдать течение стекол при комнатной температуре, превышает время жизни Вселенной
По расчетам Ивонны Стокс даже 5% увеличение толщины внизу привело бы к уменьшению высоты стекла на несколько сантиметров, что привело бы к его выпадению из рамы
Подводя итог, можно сделать вывод что оконные стекла не текут при комнатной температуре, по крайней мере за обозримый промежуток времени.
Иван Сизовотвечает на ваши вопросы в своейПрямой линии
Свидетельство о публикации №219070901456