Вычисления для АВС-гипотезы
CALCULATIONS FOR ABC-CONJECTURE
1) A + B = C :
C = 3^8 = 6561 ; logC = 8,78890 ;
B = 5^4 = 625 ; logB = 6,43935;
A = 5936 = 2^4 ; 7 ; 53 ;
logA = 8,68879 ;
rad(ABC) = 2*3*5* 7 * 53 = 11130 ;
log(rad(ABC)) = 9,31740 < logA = 8,68879 < logC = 8,78890 ;
logC/log(rad(ABC)) = 0,94328 .
2) A + B = C :
C = 3^16 = 43046721 ; logC = 17,57780 ;
B = 5^8 = 390625 ; logB = 12,87550 ;
A = 42656096 = 2^5 ; 7 ; 53 ; 3593 ;
logA = 17,56868 ;
rad(ABC) = 2*3*5* 7 * 53 * 3593 = 39990090 ;
log(rad(ABC)) = 17,50414 < logA = 17,56868 < logC = 17,57780 ;
logC/log(rad(ABC)) = 1,00421 .
3) A + B = C :
C = 3^32 = 1853020188851841 ; logC = 35,15559 ;
B = 5^16 = 152587890625 ; logB = 25,75101 ;
A = 1852867600961216 = 2^6*28951056265019 = 2^6 ; 7 ; 17 ; 53 ; 3593 ;
1277569 ;
logA = 35,15551;
rad(ABC) = 2*3*5*7 * 17 * 53 * 3593 * 1277569 = 868531687950570 ;
log(rad(ABC)) = 34,39782 < logA = 35,15551 < logC = 35,15559 ;
logC/log(rad(ABC)) = 1,02203 (a local maximum of logC/log(rad(ABC))
with m=5, n=4 for an equation: 3^(2^m) = 5^(2^n)+A ) .
4) A + B = C :
C = 3^64 = 3433683820292512484657849089281 ; logC = 70,311186475 ;
B = 5^32 = 23283064365386962890625 ; logB = 51,50201 ;
A = 3433683797009448119270886198656 =
= 2 ^7 ; 7 ; 17 ; 53 ; 673 ; 3593 ; 970561 ; 1277569 ; 1418561 ;
logA = 70,311186468;
rad(ABC) = 2 ; 3 ; 5 ; 7 ; 17 ; 53 ; 673 ; 3593 ; 970561 ; 1277569 ;
1418561 = 804769639924089402954113952810 ;
log(rad(ABC)) = 68,86035 < logA = 70,311186468 < logC = 70,311186475 ;
logC/log(rad(ABC)) = 1,02107 .
5) A + B = C :
C = 3^128 = 1,1790184577738583171520872861413e+61 ;
logC = 140,622372949518040498 ;
B = 5^64 = 5,4210108624275221700372640043497e+44 ; logB =
=103,004026395782 ;
A = 1,1790184577738582629419786618661e+61 =
= 2 ^8 ; 7 ; 17 ; 53 ; 673 ; 3593 ; 970561 ; 1277569 ; 1418561 ; ; ; ;
logA = 140,622372949518040452 ;
rad(ABC) = 2 ; 3 ; 5 ; 7 ; 17 ; 53 ; 673 ; 3593 ; 970561 ; 1277569 ;
1418561 ; ; ; = 1,3816622552037401518851312443743e+60;
log(rad(ABC)) = 138,47839288670 < logA = 140,622372949518040452 <
< logC = 140,622372949518040498 ;
logC/log(rad(ABC)) = 1,01548 .
6) A + B = C :
C = 11^8 = 214358881 ;
logC = 19,18316 ;
B = 7^8 = 5764801 ; logB = 15,56728 ;
A = 208594080 =25 • 32 • 5 • 17 • 8521 ;
logA = 19,15590 ;
rad(ABC) = 2 ; 3 ; 5 ; 7 ; 11 ; 17 ; 8521 = 334619670 ;
log(rad(ABC)) = 19,62851 > logC = 19,18316 ;
logC/log(rad(ABC)) = 0,97731 .
7) A + B = C :
C = 2^8 = 256 ;
logC = 5,54518 ;
B = 3^4 = 81 ; logB = 4,39445 ;
A = 175 = 5 ^2 ; 7 ;
logA = 5,16478 ;
rad(ABC) = 2 ; 3 ; 5 ; 7 = 210 ;
log(rad(ABC)) = 5,34711 < logC = 5,54518 ;
logC/log(rad(ABC)) = 1,03704 .
8) A + B = C :
C = 5^16 = 152587890625 ;
logC = 25,75101;
B = 7^8 = 5764801 ; logB = 15,56728;
A = 152582125824 = 2 ^8 ; 3^2 ; 41 • 337 • 4793 ;
logA = 25,75097;
rad(ABC) = 2 ; 3 ; 5 ; 7 ; 41 • 337 • 4793 = 13907225010 ;
log(rad(ABC)) = 23,35567 < logA = 25,75097 < logC = 25,75101;
logC/log(rad(ABC)) = 1,10256 .
9) A + B = C :
C = 5^8 = 390625 ;
logC = 12,87550;
B = 7^4 = 2401 ; logB = 7,78364 ;
A = 388224 = 2 ^8 ; 3^2 • 337 ;
logA = 12,86934;
rad(ABC) = 2 ; 3 ; 5 ; 7 ; 337 = 70770 ;
log(rad(ABC)) = 11,16719 < logA = 12,86934 < logC = 12,87550;
logC/log(rad(ABC)) = 1,15298 (a local maximum of logC/log(rad(ABC)).
10) A + B = C :
C = 5^4 = 625 ;
logC = 6,43775 ;
B = 7^2 = 49 ; logB = 3,8918 ;
A = 576 = 2 ^6 ; 3^3 ;
logA = 6,35611 ;
rad(ABC) = 2 ; 3 ; 5 ; 7 = 210 ;
log(rad(ABC)) = 5,34711 < logA = 6,35611 < logC = 6,43775 ;
logC/log(rad(ABC)) = 1,20397 .
11) A + B = C :
C = 2^20 *3^20 = 3656158440062976 ; logC = 35,83519 ;
B = 5^22 = 2384185791015625 ; logB = 35,40763 ;
A = 1271972649047351 = 19 • 29 • 31 • 19759 • 3768769 ;
logA = 34,77934 ;
rad(ABC) = 2 • 3 • 5 • 19 • 29 • 31 • 19759 • 3768769 =
= 38159179471420530 ;
log(rad(ABC)) = 38,18054 > logC = 35,83519 ;
logC/log(rad(ABC)) = 0,93857 .
12) A + B = C :
C = 2^21 *3^19 = 2437438960041984 ; logC = 35,42972 ;
B = 5^22 = 2384185791015625 ; logB = 35,40763 ;
A = 53253169026359 = 47 • 1133046149497 ;
logA = 31,60608 ;
rad(ABC) = 2 • 3 • 5 • 47 • 1133046149497 = 1597595070790770 ;
log(rad(ABC)) = 35,00728 < logC = 35,42972 ;
logC/log(rad(ABC)) = 1,01207 .
13) A + B = C :
3^4*19^4=5^4*11^4+2^6*7*3137 ;
C=3^4*19^4= 10556001; logC=16,172205;
B=5^4*11^4= 9150625 ; logB=16,029333;
A= 1405376 =2^6*7*3137; logA=14,155815;
rad(ABC)=2*3*5*7*11*19*3137=137682930;
log(rad(ABC))= 18,740464; logC/log(rad(ABC))= 0,862956 .
14) A + B = C :
3^8*19^8=5^8*11^8+2^7*7*3137*9853313 ;
C=3^8*19^8= 111429157112001; logC= 32,344410;
B=5^8*11^8= 83733937890625; logB= 32,058665;
A= 27695219221376 =2^7*7*3137*9853313; logA=30,952281;
rad(ABC)=2*3*5*7*11*19*3137*9853313=1356633004047090;
log(rad(ABC))= 34,843782; logC/log(rad(ABC))=0,928269 .
15) A + B = C :
3^8=7^4+2^6*5*13 ;
C=3^8= 6561; logC= 8,788898;
B=7^4= 2401 ; logB= 7,783640;
A= 4160 =2^6*5*13; logA= 8,333270;
rad(ABC)=2*3*5*7*13=2730;
log(rad(ABC))=7,912057; logC/log(rad(ABC))= 1,110823 .
16) A + B = C :
3^2*5^2=2^5*7+1;
C=3^2*5^2= 225; logC= 5,416100;
B=2^5*7= 224 ; logB= 5,411646;
A= 1; logA= 0;
rad(ABC)=2*3*5*7=210;
log(rad(ABC))= 5,347108; logC/log(rad(ABC))= 1,012903 .
17) A + B = C :
2^16=3^10+13*499;
C=2^16 = 65536;
rad(ABC)=2*3*13*499=38922;
logC/log(rad(ABC))= 1,049297 .
18) A + B = C :
2^32=3^20+5 ; 13 ; 499 ; 24917 ;
C=2^32 = 4294967296 ;
rad(ABC)=2*3*5*13*499*24917= 4849097370 ;
logC/log(rad(ABC))= 0,994559 .
19) A + B = C :
2^34=5*3^19+5281 ; 2152729 ;
C=2^34 = 17179869184 ; logC=34log2=22,180710 ;
rad(ABC)=2*3*5*5281*2152729 = 341056855470 ;
log(rad(ABC))=26,555315 ;
logC/log(rad(ABC))=0,835264 .
20) A + B = C :
5*3^20=2^34+11*23095711 ;
C=5*3^20 = 17433922005 ; logC=23,581684 ;
rad(ABC)=2*3*5*11*23095711=7621584630;
log(rad(ABC))= 22,754250;
logC/log(rad(ABC))=1,036364.
21) A + B = C :
21.1) 3^2= 2^3+1 ;
C=3^2=9 ;
rad(ABC)=2*3=6 ;
logC/log(rad(ABC))=1.226294 ;
21.2) 3^4= 2^4*5+1 ;
C=3^4=81 ;
rad(ABC)=2*3*5=30 ;
logC/log(rad(ABC))=1.292030 (a local maximum of logC/log(rad(ABC));
21.3) 3^8= 2^5*5*41+1 ;
C=3^8=6561 ;
rad(ABC)=2*3*5*41 ;
logC/log(rad(ABC))=1.235303 ;
21.4) 3^16= 2^6*5*23*41*9127+1 ;
C=3^16 ;
rad(ABC)=2*3*5*23*41*9127 ;
logC/log(rad(ABC))=0.907510 .
22) С=В+А :
7^4= 2^5*5^2*3+1 ;
C=7^4 = 2401;
rad(ABC)=2*3*5*7 = 210;
logC/log(rad(ABC))= 1.455673 .
Свидетельство о публикации №220031001685