Теория глобального пространства-времени Ч1. 7

"Теория глобального пространства-времени Вселенной"
Часть первая "Геометрия реального глобального пространства-времени Вселенной"

     Настоящая концепция глобального пространства-времени Вселенной опирается на концепцию пространства и концепцию "глобального времени", разработанную и изложенную выдающимся российским ученым Дмитрием Евгеньевичем Бурланковым в его работах «Динамика пространства» и «Теория глобального времени», изданных в России Нижегородским государственным университетом им. Н.И. Лобачевского. Данные работы Д.Е. Бурланкова являются обобщением и развитием «Общей теории относительности» А. Эйнштейна и Д. Гилберта, которая вытекает из «Теории глобального времени», как частный случай - при равенстве нулю суммы собственной плотности энергии пространства и прочей вложенной в пространство энергии.

     В указанных и других своих работах, посвященных динамике пространства, Д.Е. Бурланков вводит и обосновывает понятие "глобального времени", как времени единого (одинакового) для всех точек динамически меняющегося трехмерного пространства, уравнения для метрики которого в "глобальном времени" вытекают, как аналогично и у Д. Гилберта (в отличие от Бурланкова, Гилберт выводит свои уравнения для метрики четырехмерного пространства-времени Минковского), из применения вариационного принципа наименьшего действия для Лагранжиана, представляющего собой разность собственных кинетической и потенциальной энергии пространства, выражаемых через метрику пространства, с поправкой на действие прочей материи. Однако, для обеспечения полноты и "решаемости" полученной системы из девяти нелинейных уравнений второго порядка в частных производных для метрики пространства-времени, и Д.Гилберту и А. Эйнштейну пришлось искусственно вводить дополнительное - десятое уравнение связи, накладывающее ограничение на плотность энергии, а именно - сумма собственной плотности энергии пространства и плотности энергии вложенной материи должна быть равна нулю, чего вовсе не следовало ни из каких экспериментальных данных, и что опровергается новейшими наблюдениями. Но Д.Е. Бурланкову, за счет введения единого "глобального времени" для  метрики трехмерного пространства, удалось сформулировать и решить вариационную задачу  в "глобальном времени", и получить для трехмерной метрики пространства полную и решаемую систему из шести динамических нелинейных уравнений второго порядка в частных производных и трех линейных по скорости уравнений связи для поля скоростей, то есть  без введения каких-либо надуманных дополнительных уравнений связи и ограничений на суммарную плотность энергии, в том числе без ее искусственного обнуления.
   При этом, Д.Е. Бурланков не только находит и во много раз расширяет круг и классы возможных решений уравнений для метрики пространства, благодаря чему объясняет необъясненные до него явления, но и существенно упрощает вид решений, уже полученных в рамках Общей теории относительности, за счет введения единого "глобального времени" и ухода от невероятно усложняющего картину пространственно-временного четырехмерного многообразия.
"Глобальное время" используется Д.Е. Бурланковым как для решения задач для пространства любой отдельной свободно падающей локальной микро-лаборатории - лаборатории с однородным в бесконечно-малом пределе пространством, так и для получения отдельных классов решений макроскопических задач с определенным классом граничных (начальных) условий и источников энергии.

     Изучая указанные работы Д.Е. Бурланкова, я был искренне удивлен тем, что он, называя собственную энергию пространства гравитационной, вводя для описываемого им пространства "абсолютную инерциальную систему", в которой точки пространства своих координат не меняют (используемую в "динамической геометрии"), и математически доказав, что постулируемое им  первоначально для всего пространства бесконечно малой микро-лаборатории единое "глобальное время" является единым и одинаково текущим для всех вместе свободно падающих в гравитационном поле "глобального пространства"  локальных микро-лабораторий, тем не менее не делает внятных обобщений указанных принципов на единое "глобальное пространство" всей Глобальной Вселенной, не формулирует понятие "глобального пространства" Глобальной Вселенной и не распространяет понятие "глобального времени" на Глобальную Вселенную, хотя и использует образно понятие "глобальное время Мира". Размышляя над этим обстоятельством, я пришел к выводу, что Д.Е. Бурланков, как настоящий ученый, оценив фундаментальную нелинейность уравнений для метрики пространства и крайнюю их сложность в случае математического описания действия многочисленных гравитирующих объектов, просто не стал долго рассуждать об объекте - Вселенной, совокупное движение всех частей которой не смог описать математически.

     Однако для себя я сделал вывод, что данное обстоятельство не повод для того, чтобы не сделать попытку гипотетически обобщить указанные принципы на "глобальное пространство" всей Глобальной Вселенной, которое в дальнейшем для краткости буду называть "глобальным пространством", а единое для него "глобальное время" всей Глобальной Вселенной также для краткости буду называть "глобальным временем". При этом, имея ввиду новейшие достижения Квантовой теории в плане обоснования глобальной нелокальности Вселенной, я сделал ряд допущений, существенно упрощающих нелинейную картину "глобального пространства" и "глобального времени" Вселенной. В результате - сложившаяся концепция по-новому, а иногда и впервые объясняет ряд наблюдаемых явлений, а в перспективе также может объяснить почему ряд предсказываемых предшествующими теориями явлений не наблюдается на практике.

     Естественно первым базовым постулатом - базовым принципом - моей концепции "глобального пространства" и "глобального времени" Вселенной является "Принцип эквивалентности пространства-времени и гравитации", к формулировке которого, как я считаю, вплотную подошел и сам Д.Е. Бурланков, особенно когда указывал, что принцип эквивалентности, известный из "Общей теории относительности" в рамках "Теории глобального времени" превращается из локального в глобальный. Согласно "Принципу эквивалентности пространства-времени и гравитации": гравитация не просто как по Эйнштейну обеспечивает кривизну пространства, гравитация не просто как по Бурланкову генерирует само пространство, обладающее уже как самостоятельный объект собственной энергией, в рамках моей концепции  пространство-время и гравитация суть одно и то же, что является исходной гипотезой и исходным постулатом Принципа эквивалентности пространства-времени и гравитации. Согласно данному принципу пространство-время есть ни что иное как глобальное гравитационное поле, генерируемое в едином "глобальном времени" всей совокупностью гравитирующих объектов Вселенной, включая и само "глобальное пространство" как гравитирующий объект, а точнее все-таки глобальное пространство-время, о чем поговорим позднее.
   Полагаю, что само так называемое базовое бесконечное Евклидово пространство Вселенной, получаемое, как в рамках "Общей теории относительности", так и в рамках "Теории глобального времени", как пространство с нулевой энергией, есть ни что иное, как математическая абстракция, не соответствующая реальности. Это очевидно уже в рамках квантовой гипотезы самой "Теории глобального времени", поскольку квантовый подход изначально исключает реальность абсолютно нулевой энергии.
   
   Если попытаться представить себе геометрию такого глобального пространства-времени, то необходимо учесть его глобальную анизотропию, наиболее важным доказательством наличия которой я считаю практическое отсутствие антиматерии во Вселенной, при котором ряд имеющих ненулевую массу элементарных частиц, например нейтрино, могут быть только левополяризованными, а их античастицы, в приведенном примере - антинейтрино, могут быть только правополяризованными. Отсюда следует вывод о том, что глобальное пространство Вселенной имеет собственную массу и собственный момент импульса, а вследствие или точнее в связи с глобальной неоднородностью Вселенной обладает еще и прецессией. При таких условиях антиматерия не может генерироваться во Вселенной в глобально больших количествах
ни на какой стадии ее развития, в связи с чем мы и наблюдаем ее практическое отсутствие при сравнительно малой суммарной энергии и плотности реликтового излучения. В этих условиях наиболее вероятной геометрией глобального пространства-времени является глобальное пространство в виде трехмерной поверхности сферически деформированного (четырехмерно сферически деформированного) четырехмерного гипертора. Сразу же замечу, что эта трехмерная поверхность, большая часть поверхности которой близка к поверхности соответствующей трехмерной гиперсферы (трехмерной сферы в четырехмерном пространстве), как раз и является трехмерным пространством нашей Вселенной. А  третий главный образующий радиус R3 нашего четырехмерного гипертора (радиус его третьей главной образующей окружности) следует рассматривать, как величину, содержащую глобальное время нашей Вселенной согласно формуле R3=T*C, где T - глобальное время Вселенной, а C - скорость света в вакууме или величина близкая к ней.
    Подобная геометрия предполагает изначальное равенство или почти равенство всех трех главных координатных радиусов четырехмерного гипертора (R1=R2=R3). Здесь эти главные радиусы являются радиусами трех соответствующих главных (образующих) окружностей полученного четырехмерного гипертора. С возникновением гравитации, как самостоятельного поля, происходит сферическая деформация полученного четырехмерного гипертора, при которой подавляющая часть его поверхности будет асимптотически стремиться к  поверхности соответствующей гиперсферы с радиусом равным R3. Такая деформация предполагает выполнение следующего соотношения: R1<<R2<<R3. В привычном нам квазиевклидовом трехмерном пространстве мы можем представить себе аналог такой трехмерной поверхности полученного таким образом  четырехмерного гипертора, как поверхность апельсина с удаленными кожицей и осевой сверхтонкой несъедобной жилкой, или как поверхность состоящую из стелющихся вдоль поверхности Земли и уходящих в полюса линий ее магнитного поля. Но, еще полезнее представить себе такой аналог в виде наружной поверхности накачанной воздухом тороидальной резиновой камеры без отверстия в ее середине (вдоль оси тора). При таком представлении этого аналога легко себе представить и сферическую деформацию соответствующего тора, для этого такую тороидальную резиновую камеру необходимо втиснуть в сферу чуть большего объема, чем объем этой тороидальная камера. Поскольку почти вся поверхность деформированной таким образом резиновой тороидальной камеры будет повторять или почти повторять поверхность сферы, в которую мы ее втиснули, становится понятным, что радиус R1 первой главной образующей окружности (первый главный образующий радиус R1) будет уменьшаться, стремясь к нулю. Вторая главная образующая окружность при такой деформации преобразуется в фигуру близкую (близко вписанную) к полуокружности со стягивающей ее концы хордой, то есть полученная фигура напоминает плоскую грань апельсиновой дольки. Такая деформированная вторая главная образующая окружность уже будет иметь радиус R2 равный радиусу сферы, в которую мы втиснули нашу тороидальную резиновую камеру. А ее сильно деформированную часть близкую к хорде уже нельзя будет описать одним лишь радиусом R2, но подробное описание этой части мы пока опустим.
    Для нас важно так же, что главная образующая двумерная поверхность нашего четырехмерного гипертора, определяемая главными радиусами R1 и R2, как раз и будет иметь форму поверхности такого очищенного апельсина или наружной поверхности такой сферически деформированной резиновой тороидальной камеры.
    Каждая из точек главной образующей двумерной поверхности нашего четырехмерного гипертора является центром соответствующей его третей главной образующей окружности, имеющей радиус  R3. Эта третья главная образующая окружность лежит в плоскости ортогональной (перпендикулярной) соответствующей второй главной образующей окружности  и пересекается с ней по прямой, проходящей через соответствующую точку главной образующей двумерной поверхности и центр соответствующей второй главной образующей окружности. Однако, для построения такой ортогональной плоскости необходимо уже использовать четвертое измерение, ортогональное всему трехмерному пространству, в котором мы построили главную образующую двумерную поверхность нашего четырехмерного гипертора. Поэтому соответствующая четвертая ось должна быть ортогональна не только плоскости второй главной образующей окружности, но и плоскости первой главной образующей окружности, а значит и оси симметрии главной образующей двумерной поверхности нашего четырехмерного гипертора.
    Геометрический образ третей главной образующей окружности и образ соответствующего четырехмерного гипертора нам крайне сложно представить, поскольку мы оперируем привычными нам трехмерными образами. Для нас пока важно то, что при соответствующей сферической деформации нашего четырехмерного гипертора его третья главная образующая окружность деформируется аналогично его второй главной образующей окружности, а именно преобразуется в фигуру близкую (близко вписанную) к полуокружности со стягивающей ее концы хордой (напоминает плоскую грань апельсиновой дольки).
    Поскольку получившийся таким образом четырехмерный гипертор будет иметь центр симметрии, то прямолинейный отрезок, соединяющий этот центр с любой точкой трехмерной поверхностью этого гипертора (точкой трехмерного пространства Вселенной), необходимо (при такой геометрии) рассматривать как величину, содержащую локальное время в этой точке. Точнее локальное время в некоторой точке пространства Вселенной определяется длиной отрезка один конец которого является соответствующей точкой поверхности нашего четырехмерного гипертора, а другой конец является точкой пересечения главной образующей двумерной поверхности нашего четырехмерного гипертора с прямой, соединяющей его центр симметрии с указанной точкой его поверхности. Но, поскольку R1<<R2<<R3, то для определения локального времени в точках той части его поверхности, которая близка к трехмерной гиперсфере, можно использовать расстояние до его центра симметрии. Дело в том, что такой четырехмерный гипертор постоянно раздувается в глобальном времени и радиус R3, определяющий глобальное время Вселенной, постоянно растет, что подтверждается наблюдаемым расширением Вселенной. Поэтому радиус R3 поверхности такого гипертора и следует рассматривать как глобальное время или как некую пространственно-временную координату содержащую глобальное время.  Если в рамках  предлагаемой геометрии считать, что R3 это глобальное время, то поскольку R1 и R2 имет размерность расстояния (длины), то для соблюдения совпадения размерности R3 с размерностями R1 и R2,  глобальное время необходимо ввести в привычной нам размерности времени. А именно для измерения времени в привычных нам размерностях вводим глобальное время T, определяемое формулой R3=T*C , где C является универсальной физической константой имеющей размерность скорости.  При этом наиболее вероятно, что C является скоростью света в вакууме, или максимально близка к этой скорости, что подтверждается тем, что скорость удаления от нас самых удаленных наблюдаемых звезд и галактик близка к скорости света в вакууме. Простейшее геометрическое построение подтверждает этот вывод. При такой геометрии в электромагнитных волнах (фотонах) мы можем наблюдать только одно полушарие трехмерной поверхности такого сферически деформированного четырехмерного гипертора. При этом мы, находясь в геометрическом центре такого полушария, всегда будем наблюдать, что одни и те же максимально удаленные видимые нами галактики и звезды будут всегда удаляться от нас со скоростями почти равными скорости света и не исчезают из вида, но при этом на горизонте Вселенной не будут появляться новые галактики и звезды, которых ранее было невозможно увидеть, что собственно пока и наблюдается.
   При этом каждый конкретный отрезок, соединяющий центр симметрии такого гипертора с каждой конкретной точкой его поверхности следует рассматривать как локальное время в этой точке. Поскольку реальная трехмерная поверхность такого четырехмерного гипертора в реальной Вселенной представляет собой реальное трехмерное пространство Вселенной, то эта поверхность является реально неоднородной в смысле нарушения центральной сферической и осевой симметрии. Эта неоднородность вызвана во-первых, наличием видимой материи и связанных с нею гравитационных взаимодействий и связанных с  ее движением релятивистских явлений, а во-вторых, эта неоднородность вызвана также иными собственными деформациями этой поверхности, которые наблюдаются в виде темной материи. Указанная неоднородность и приводит к тому, что для одного и того же глобального времени в различных точках реального трехмерного пространства Вселенной локальное время является неодинаковым. Каждая элементарная частица во Вселенной имеет свое собственное локальное время. Это выражается в частности в "парадоксе близнецов", а также в том, что атомы соединенные в молекулы и кристаллы не разлетаются, также  и в том, что не разлетаются тела связанные гравитацией и иными взаимодействиями. С учетом перехода к привычным нам размерностям это локальное время определяем по формуле r3=t*C, где r3 является длиной  отрезка, соединяющего центр симметрии такого гипертора с соответствующей конкретной точкой его поверхности, а t является локальным временем в этой точке.
   
    Такая геометрия гипер-тороидального пространства-времени напоминает геометрию гипер-шарового пространства-времени, где трехмерное пространство Вселенной  является трехмерной гиперсферой, которая является трехмерной поверхностью четырехмерного гипершара. При этом единственный радиус этой трехмерной гиперсферы определяется формулой R=T*C, где T - глобальное время, а а C - скорость света в вакууме или величина близкая к ней. Но в то же время предложенная мной геометрия является тороидальной геометрией, в которой анизотропность и глобальная неоднородность трехмерного пространства Вселенной заложены изначально, и этим она коренным образом отличается от изначально однородного и изотропного трехмерного пространства трехмерной гиперсферы.
    Если рассматривать традиционную теорию "Большого взрыва" в рамках однородного и изотропного (кроме направления времени) пространства-времени или же в рамках гипер-шарового пространства-времени, которое также является однородным и изотропным (кроме направления времени), то у точечного изначального источника энергии Вселенной нет никаких математических оснований к саморазвитию вследствие отсутствия "соотношений масштаба" в однородном и изотропном (кроме направления времени) пространстве-времени. Для такого точечного источника энергии трехмерное однородное и изотропное пространство, в том числе гипер-сферическое пространство,  неотличимы от одномерного пространства, и даже единственно возможное в таких условиях соотношение масштаба R=T*C оказывается лишенным смысла, вследствие отсутствия масштабированной линейки для измерений. Именно поэтому я полагаю, что Большой взрыв и последующее появление и саморазвитие неоднородной и анизотропной Вселенной невозможны в однородном и изотропном (кроме направления времени) пространстве-времени.

    Говоря о возможных геометриях реального пространства-времени Вселенной практически все ученые упускают вопрос о том, почему все основные физические константы и соответственно все физические законы одинаковы и неизменны во всей Вселенной во все времена.
    Полагаю что данный факт совершенно невозможно объяснить без признания еще одного основополагающего физического принципа - "принципа нелокальной связанности Вселенной". Речь здесь не только о том, что все взаимодействовавшие некогда элементарные частицы являются нелокально связанными хотя бы по импульсу, орбитальному моменту импульса и координатам, а иногда и по собственному моменту импульса. Я полагаю, что все точки или элементарные кирпичики реального пространства, а точнее пространства-времени, являясь реальными квантовыми объектами имеют нелокальную связь друг с другом (то есть мгновенное, совершаемое с бесконечной скоростью в глобальном времени взаимодействие друг с другом вне зависимости от расстояние между ними) через структуры глобального пространства-времени. И именно такое взаимодействие собственных квантов пространства-времени, совершаемое с бесконечной скоростью, и обеспечивает одинаковость и неизменность всех основных физических констант и соответственно всех физических законов. В том числе оно обеспечивает известную каждому физику нелокальную связанность взаимодействовавших элементарных частиц.
    При этом сами величины самих основных физических констант определятся так называемыми "соотношениями масштаба" к которым относится в первую очередь геометрия глобального пространства времени, а именно: степень и форма сферической деформации глобального пространства-времени, изначальное несовпадение и соотношение главных геометрических радиусов R1, R2 и R3, соотношение скорости расширения Вселенной, определяемой скоростью увеличения радиуса R3, и линейных скоростей вращения глобального пространства, соотношение угловых скоростей вращения глобального пространства вдоль главных геометрических окружностей вышеуказанного глобального гипертора, соотношение энергий таких вращений, соотношения указанных энергий и иных глобальных энергий, а также всей глобальной массы Вселенной и энергии расширения Вселенной. Полагаю, что наблюдаемая неизменность основных физических констант объясняется неизменностью или относительно высокой стабильностью вышеуказанных "соотношений масштаба".
   
    Формально к соотношениям масштаба можно отнести и вышеупомянутую формулу R3=T*C, однако полагаю, что универсальная константа C, совпадающая, по-видимому, со скоростью света в вакууме, определяется иными, а именно базовыми соотношениями масштаба, например соотношением глобальной инерционной массы и глобальной энергии Вселенной, определяемой формулой E=M*C*C.

   
    В связи с вышеизложенным, логично также предположить, что изначально все и в основном все вышеописанное пространство-время Вселенной, в том числе и "глобальное время" генерируется глобальным сверх-массивным вращающимся с прецессией гравитирующим телом, которое я называю Черной дырой Вселенной. Хотя нельзя полностью исключить и совершенно иную природу вышеописанной геометрии пространства-времени Вселенной.


Рецензии