Прыжок в бездну 2

продолжение
Так что же такое Вселенная?
Разберём этот вопрос более детально в современном и историческом аспекте.
Некоторые даже не понимают, насколько сложным и масштабным выглядит вопрос: «Что такое Вселенная?». Можно потратить десятилетия на исследования и рассекретить лишь верхушку айсберга. Возможно, мы говорим не просто об огромном мире, но бесконечном. Поэтому нужно быть энтузиастом своего дела, чтобы погрузиться во все эти загадки, на расшифровку которых может уйти вся жизнь.
Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала. Но исследования выдвигают множество теорий и пазл за пазлом собирают картинку.
                Определение Вселенной
Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитери Сатурн) и звезды.
Геоцентрическая концепция Вселенной Птолемея, созданная Бартоломеу Велью


Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все». В современном понятии вмешают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.
                Происхождение Вселенной
Как появился космос и все, что мы знаем? Современная наука придерживается гипотезы, что Вселенная берет свое начало 13.8 лет назад с Большого Взрыва. Это не единственное предположение (теория колеблющейся Вселенной или устойчивого состояния), но только ему удается объяснить появление всей материи, физических законов и прочих формирований.  Теория также способна рассказать, почему происходит расширение, что такое реликтовое излучение и прочие известные явления.
Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением
Ученые начали рассматривать Вселенную с настоящего момента и постепенно возвращались к стартовой точке. Отсюда выплыло предположение, что все началось с бесконечной плотности и исчисляемого времени, запустивших процесс расширения. После первого этапа температурные показатели упали, что помогло сформироваться субатомным частицам, а после них – простые атомы. Позже гигантские облака этих формирований соединились с гравитационными силами, порождая звезды и галактики.
Официальный возраст Вселенной – 13.8 миллиардов лет. Проводя тесты с ускорителями частиц, теоретическими принципами, а также исследуя небесные объекты, ученым удалось воссоздать этапы событий, чтобы вернуть нас с современности в мгновение начала всего.
Но наиболее отдаленный период Вселенной (от 1043 до 1011 секунд) все еще вызывает споры. Стоит учитывать, что современные физические законы к тому времени еще не применимы, поэтому никто не может понять, как повела себя Вселенная. Но все же есть сторонники некоторых теорий, которые помогли выделить главные временные промежутки вселенской эволюции: сингулярность, инфляция и охлаждение.
Графическое представление сингулярности Вселенной


Сингулярность (эпоха Планка) – самый ранний период Вселенной. На этом этапе материя была собрана в одной точке бесконечной плоскости, где царствовали экстремальные температурные режимы. В физическом плане доминирует исключительно сила гравитации.
Это время длилось от 0 до 1043 секунд. Свое второе название эпоха получила в честь Планка, потому что лишь эта обсерватория способна проникнуть в такой промежуток. Вселенная была лишенной устойчивости, потому что вещество было не просто невероятно накаленным, но и сверхплотным. По мере расширения и снижения накаленности, возникли физические законы. С 1043 до 1036 секунды запустился температурный переход.
Начали выделяться фундаментальные силы, отвечающие за вселенские механизмы. Первой была гравитация, затем электромагнетизм и первая ядерная сила. С 1032 и до сегодня длится инфляция. Моделирование демонстрирует, что Вселенная была наполнена однородной энергией с высокой плотностью. Расширение заставило ее терять температуру.
Это началось с 1037 секунд, когда выделение сил привело к экспоненциальному росту. В этот промежуток стартует барионегез – гипотетическое событие, характеризующееся настолько высокими температурными показателями, что случайные движения частиц осуществлялись на релятивистских скоростях. При столкновениях они создавались и уничтожались. Полагают, что именно из-за этого материя преобладает над антиматерией.
Когда инфляция подошла к концу, пространство представляло собою кварк-глюонную плазменную структуру и прочие элементарные частички. С остыванием материя сливалась и формировала новые структуры. Период охлаждения наступил с уменьшением температуры и плотности. В этом процессе элементарные частички и фундаментальные силы приобрели современный вид.
Есть мнение, что через 1011 секунд энергия стремительно снизилась. Еще спустя 106 секунд кварки и глюоны объединились в барионы, что привело к их переизбытку. Температура больше не достигала необходимой отметки, поэтому у протонов-антипротонов исчезла возможность формировать новые пары. Произошла массовая аннигиляция, оставившая лишь 1010 изначального их количества. То же самое случилось и для электронов и протонов спустя секунду.
Оставшиеся протоны, электроны и нейтроны оставались статичными, поэтому вселенская плотность обеспечивалась только фотонами и нейтрино. Прошло еще несколько минут, и начался нуклеосинтез.
Температура остановилась на отметке в миллиард кельвинов, а плотность уменьшилась. Поэтому протоны и нейтроны начали сливаться, формируя изотоп водорода (дейтерий) и атомы гелия. Но большая часть протонов все же оставалась «одиночной».
Проходит 379000 лет и электроны, объединенные с ядрами водорода, создали атомы, а отделенное излучение продолжило расширяться. Сейчас мы знаем его как реликтовое (древнейший вселенский свет). По мере расширения, его плотность и энергия терялись. Современная температура –  2.7260 ± 0,0013 К (-270,424 °C) и плотность энергии 0,25 эВ/см3. Вы можете посмотреть в любую сторону и повсюду натолкнетесь на остатки этого излучения.
                Эволюция Вселенной
Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты. Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).
                Что ждет Вселенную?
Если мы знаем о наличии стартовой точки, то нас должен волновать и финиш. Что же нас ждет? Вечное расширение? Или же возвращение в компактный первородный шарик? Как умрет Вселенная? Эти вопросы возродились, когда велись дискуссии об истинной модели Вселенной. В 1990-х годах научное сообщество определилось с Большим Взрывом, создав два возможных варианта конца.
Познакомьтесь с Большим Сжатием. Вселенная продолжит разрастаться до максимального объема, а затем запустит процесс саморазрушения. Это возможно, если массовая плотность превышает критическую. Если же это значение такое же или ниже, тогда в игру вступает Большое Замораживание. Пространство также продолжит расширяться, пока звезды не смогут поддерживать процесс формирования (израсходуется весь газ). Все уже существующие звезды сгорели бы и трансформировались в белых карликов, а нейтронные – в черные дыры.
                Возможные варианты конца Вселенной
Конечно, черные дыры стали бы притягиваться, порождая настоящих гигантских монстров. Средняя температура пространства достигла бы абсолютного нуля, и черные дыры испарились. Энтропия вырастет до такой степени, что запустит сценарий тепловой смерти, когда уже просто невозможно извлечь никакой организованной формы энергии.
Есть также теория фантомных энергий. Она полагает, что галактические скопления, планеты, звезды, ядра и даже материя разорвутся из-за расширения. Такой исход называют Большим разрывом.
 



                История изучения Вселенной
Если говорить в общем, то природу вещей изучают еще с начала времен. Наиболее ранние известия о Вселенной представлены в мифах и передавались устно. По большей части все начинается с момента творения, за которое ответственен Бог или боги.
Астрономия появилась в Древнем Вавилоне. Созвездия и календари фигурируют у них еще 2000 лет до н.э. Более того, им даже удалось создать предсказания на последующую тысячу лет. Греческие и индийские ученые подходили к вопросам Вселенной с философской стороны, сосредотачиваясь не на божественном вмешательстве, а на причине и следствии. Можно вспомнить Фалеса и Анаксимандра, утверждавших, что все появилось из первозданной материи.
Эмпедокл (5-й век до н.э.) стал первым в западном мире, кто предположил, что Вселенная представлена землей, воздухом, водой и огнем. Эта система стала очень популярной среди философов, так как сильно походила на китайскую: металл, дерево, вода, огонь и земля.
Только с Демокритом приходит теория о неразделимых частицах (атомов), из которых и состоит пространство. Ее продолжил философ из Индии по имени Канада, считавший, что свет и тепло являются одним веществом, просто представленным в разных формах. Буддийский философ Дигнана еще более продвинулся, заявив, что вся материя – энергия.
Идея о конечности времени вошла в христианство, иудаизм и ислам. Они верили, что у Вселенной есть начало и конец. Космология продолжала развиваться, и греки выдвигают геоцентрическую модель, которая гласит, что в центре всего стоит Земля, вокруг которой вращаются небесные тела. Детальнее всего это описано в «Альмагесте» Птолемеем. Это станет каноном и продлится до Средневековья.
 Возможности существований Геоцентрической и гелиоцентрической моделей Вселенной
Еще до периода научной революции (16-18 века) появлялись ученые, считавшие, что в основе всего должна стоять гелиоцентрическая модель, где в центре нашей системы расположено Солнце. Среди них фигурируют Аристарх Самосский (310-230 гг. до н.э.) и Селевк (190-150 гг. до н.э.).
Хотя в индийские, персидские и арабские философы развивали идеи Птолемея, находились и революционеры. Например, Ас-Сиджизи или Ариабхата. В 16-м веке появляется Николай Коперник. Его заслуга в том, что он выдвинул концепцию гелиоцентрической модели и обосновал доказательства ее верности. Они основывались на 7 принципах:
• Небесные тела не совершают вращение вокруг одной точки.
• Луна вращается вокруг Земли, а все сферы совершают оборот вокруг Солнца, расположенного возле вселенского центра.
• Дистанция Земля-Солнце – это лишь незначительная часть расстояния от Солнца к другим звездам, поэтому мы не видим параллакс.
• Звезды пребывают в неподвижном состоянии – кажущееся движение вызвано земным осевым вращением.
• Земля двигается по орбитальному пути, поэтому кажется, что Солнце мигрирует.
• У Земли наблюдается больше одного движения.
• Орбитальный земной проход создает впечатление, что другие планеты движутся в обратном направлении.
Более расширенная версия его идей появилась в 1532 году, когда дописал «О вращении небесных сфер». В рукописи фигурировали те же аргументы, но уже подкрепленные научными доводами и примерами. Но автор переживал, что его начнут преследовать со стороны церкви и работа увидела свет лишь в 1542 году после его смерти.
За его идеи взялись ученые 16-17-х веков. Особой заслуги достоин Галилео Галилей. При помощи своего нового изобретение (телескоп) он впервые взглянул на Луну, Солнце и Юпитер, которые не вписывались в геоцентрическую модель, зато соответствовали гелиоцентрической.
В начале 17-го века его записи опубликовали. Интересными были наблюдения кратерной поверхности Луны, а также детализация крупнейших спутников Юпитера и выявление солнечных пятен. Не обошел он стороною и Млечный Путь, который до этого считался туманностью. Галилей увидел, что перед ним множество плотно расположенных звезд.
В 1632 году он выступил за гелиоцентрическую модель в трактате «Диалог о двух системах мира». Его аргументы разбили верования Птолемея и Аристотеля. Дальнейшему укреплению способствовала теория Иоганна Кеплера об эллиптических орбитах планет. Дальше появляется Исаак Ньютон, создавший теорию всемирного тяготения. В трактате 1687 года он описал три закона движения:
• При наблюдении в инерциальной системе, объект пребывает в покое или двигается с постоянной скоростью, пока на него не повлияет внешняя сила.
• Векторная сумма внешних сил (F) равняется массе (m) объекта, умноженной на вектор ускорения (a): F = ma.
• Когда первое тело прикладывает силу ко второму, то второе одновременно прикладывает силу, равную по величине и противоположную по направлению к первому.

 
Демонстрация дистанции между планетами в Солнечной системе
Все вместе эти принципы описывали связь между объектом, воздействующими силами и движением. Это стало основой для классической механики. С их помощью Ньютон определил массы планет, выравнивание Земли на полюсах и выпуклость на экваторе, а также то, что сила тяжести между Солнцем и Луной создает приливы на Земле.
Следующий прорыв произошел в 1755 году. Иммануил Кант выдвигает идею, что Млечный Путь – огромная звездная коллекция, скрепленная общей гравитацией. Звезды вращаются, формируя сплющенный диск, а Солнечная система расположена внутри него.
В 1785 году Уильям Гершель хотел вычислить форму галактики, но он не догадался, что большая ее часть скрыта за пылью и газом. Пришлось ждать 20-го века и появления Эйнштейна с его Специальной и Общей теориями относительности. Началось с того, что он просто хотел решить законы ньютоновской механики законами электромагнетизма. В 1905 году появилась Специальная теория относительности.
Она утверждала, что скорость света одинакова для всех инерциальных систем координат. Но это вступало в противоречие с предыдущим мнением (свет, проходящий сквозь движущуюся среду, будет следовать вдоль среды, то есть, скорость света равняется сумме скорости прохода сквозь среду и скорость самой среды).
Получается, что эта теория сделала так, что среда вообще оказалась лишней. В 1907-1911х гг. Эйнштейн думал, как применить теорию к гравитационным полям. В итоге, он создал Общую теорию относительности (время относится к наблюдателю и зависит от его расположения в гравитационном поле).
Здесь же появляется принцип эквивалентности – гравитационная масса равняется инерционной массе. Он также предсказал замедление гравитационного времени, существование черных дыр и расширение Вселенной.
В 1915 году появляется радиус Шварцшильда – точка, в которой масса сферы будет так сильно сжата, что скорость ухода с поверхности приравнивается к скорости света (является результатом решения уравнение поля Эйнштейна). В 1931 году Субраманьян Чандрасекар использовал наработки Эйнштейна, чтобы понять, что если масса не вращающегося тела вырожденного электрона выше определенной отметки, то оно само рухнет.
В 1929 году Эдвин Хаббл подтвердил, что Вселенная расширяется. Для этого он замерил красное смещение, в котором галактики отходили от Млечного Пути. Кроме того, сумел продемонстрировать, что чем дальше галактика, тем быстрее скорость отдаления.
В 1931 году Жорж Леметр независимо подтвердил расширение и предположил, что Вселенная началась с маленького объекта (зарождение теории Большого Взрыва). То есть, в определенный момент вся масса была сконцентрирована в одной крошечной точке. Эта идея вызвала бурные споры в 1920-1930-х годах, так как все еще были сторонники статичной Вселенной.
Но споры разрешились в 1965 году, когда обнаружили реликтовое излучение. В это же время появляется предположение, что темная материя является недостающей массой Вселенной. Расширили понимание Вселенной наработки Стивена Хокинга и остальных физиков, подтвердивших вариант Большого Взрыва.
В 1990-х годах все силы тратились на попытку разобраться в темной энергии. Ее появление помогло объяснить, почему пространство продолжает ускоряться. Естественно, эпоха новых телескопов позволила впервые заглянуть в глубины космоса, а значит и в прошлое (определение возраста и плотности материи).

Результаты 2016 года показывают, что скорость расширения Вселенной выше, чем полагали ранее, а значит, и постоянная Хаббла увеличилась на 5-9%. Появление телескопа нового поколения Джеймс Уэбб позволит совершить дальнейшие прорывы в изучении Вселенной.
Кажется, что человечество серьезно продвинулось в исследовании мира. Но проблема в том, что мы лишь приоткрыли дверь и с удивлением смотрим на все эти чудеса, многим из которых все еще нет объяснения. Поэтому нас ожидает еще множество открытий и сюрпризов.
                Насколько велика Вселенная?
 
Предполагаемые размеры Вселенной
Вселенная – огромное место, но каковы ее размеры? Конечно, ответ зависит от того, конечная она или нет. Даже слово «огромное» нужно уточнить. Мы говорим о видимой Вселенной или фактическом размере?
Сам по себе вопрос: «Насколько велика?» уже странный. Мы же не спрашиваем: «Насколько огромен карандаш?» или «Насколько велик дом?». Сложно объяснять без сравнения, особенно если учитывать, что мы видим лишь определенную часть Вселенной, которая может иметь конец, а может и быть бесконечной.
Кажется, что трудностей с вычислениями размеров Вселенной хватает, но прибавляется еще и процесс расширения. Чтобы свет от далекой галактики приблизился к нам, нужно время. И все это сопровождается расширением. Поэтому стабильной цифры быть не может, ведь сама Вселенная лишена покоя. Так что ученые совершенно не переживают по поводу галактических дистанций и изучают красное смещением – z. Чем оно больше, тем дальше галактика.
Возьмем, например, объект, чей показатель красного смещения достигает 7.5. С этой цифрой можно выяснить, как долго свет путешествовал от своей точки к нашей. Здесь получается 13 млрд. лет. Может показаться, что это 13 млрд. световых лет, но в тот момент Вселенная была намного меньше. Учитывая это, финальная цифра – 3.4 млрд. световых лет.



                Насколько стара Вселенная?
Какой возраст Вселенной – расширяющегося пространства: теория Большого Взрыва, эволюция Вселенной на фото, роль Хаббла и Леметра, реликтовое излучение от WMAP.
Вселенная представляет собою постоянно расширяющийся пузырь пространства и времени. Переведите стрелки часов назад, и вы попадаете в точку, где все сжато до микроскопической сингулярности непонятной плотности. Всего за долю секунды произошло расширение и продолжается по сей день.
Тогда, какой возраст Вселенной? Как долго происходит расширение? Большую часть времени ученые посвящали освоению родной планеты Земля в Солнечной системе. Но космическое пространство всегда было и будет. В 18-м веке появились первые данные геологов, подтверждающие, что Земля не могла существовать вечность. Это могли быть миллионы или миллиарды лет. Потом начали возникать сомнения по поводу вечности Солнца и даже Вселенной. Может, был период, когда вообще ничего не было? А потом бу-у-у-м… и Вселенная!
Первое понимание пришло вместе с термодинамикой. Все движется к энтропии или максимальному беспорядку. Также как остывает ваш чай, все вселенские температуры стремятся стать однородными. И если Вселенная бесконечная по возрасту, то она должна быть единой температуры, что говорит о невозможности нашего существования.
 
Временная шкала Вселенной
Астроном и священник из Бельгии Джордж Леметр предположил, что пространство должно расширяться или сжиматься. Однажды он даже сказал, что она была бесконечно маленькой – первобытный атом. В 1929 году Эдвин Хаббл подметил, что отдаленные галактики отодвигаются от нас, подтверждая мысли Леметра.
Так что, если вы отправитесь назад на машине времени, то попадете в гораздо меньшее место. А если хорошенько постараетесь, то окажитесь в точке начала всего. Значит, можно говорить о существовании возраста и выяснить дату рождения Вселенной.
В 1958 году Аллан Сэндидж использовал Константу Хаббла (скорость расширения), чтобы определить продолжительность расширения. У него вышло 20 миллиардов лет. Более точные цифры стали появляться вместе с открытием реликтового излучения – остатки света от Большого Взрыва, наблюдаемые во всех направлениях.
Спустя 380000 лет после Большого Взрыва Вселенная охладилась настолько, что это позволило слиться протонам и электронам, формируя атомы водорода. Сейчас это 3000 К. Используя эту информацию, реликтовое излучения и растянутость длины волн света, ученые пришли к дате рождения.
Итак, возраст Вселенной составляет 13-14 миллиардов лет. Миссия WMAP НАСА и космическая обсерватория Планка вывели более точное значение – 13.8242 млрд. лет (+/- несколько миллионов).
Пока мы не понимаем, как она появилась и что стало причиной. Но мы все больше вникаем в структуру, а это уже отличный старт.
                Сколько звезд во Вселенной?
  Шаровое скопление М92
сколько звезд во Вселенной: наблюдения в небе, влияние яркости на обнаружение, количество в галактике Млечный Путь, число звезд для всей Вселенной.
Рассматривая яркие небесные огоньки, очень сложно удержаться от подсчета. Сколько же звезд на небе? Даже без использования техники в ночном небе можно разглядеть несколько тысяч звезд. А сколько же их во Вселенной? Прежде, чем озвучить эту цифру, давайте узнаем, сколько доступно при помощи различных инструментов.
100% зрение позволит рассмотреть звезды 6-й величины. Но для полноты картины придется посетить оба полушария, так как с каждого открывается обзор на новые объекты. Кроме того, нужно уложиться в несколько месяцев, так как часть неба скрывается Солнцем. Итак, при идеальных условиях и отсутствии яркой Луны, вы смогли насладиться 9000 звезд.
Возьмите с собою хороший бинокль и увеличьте количество до 200000, прибавив сюда объекты 9-й величины. Маленький телескоп открывает взгляд на 13-й величину – 15 миллионов звезд.

           Но сколько звезд существует всего на просторах бесконечной Вселенной?
Существуют спиральные галактики, наполненные триллионами звезд, а также еще большие гиганты со 100 триллионами. Так сколько же их?
Наблюдаемая Вселенная насчитывает 170 миллиардов галактик. Если умножить количество звезд в нашей на сумму галактик, то получим 1024 звезд – септиллион.
Но ведь может быть и больше. Наблюдаемая Вселенная охватывает 46 млрд. лет во всех направлениях. Это то пространство, которое открыто нашему взгляду с момента Большого Взрыва. Поэтому выведенная цифра – минимальное количество звезд на небе. В «полноценной» Вселенной звезд может быть намного больше, особенно если учитывать вариант с бесконечным пространством
  Эллиптическая галактика ESO 325-G004
                Теория рождения галактик.
Теория происхождения галактик основывается на принципе гравитационной неустойчивости. Принцип гласит: частицы вещества не могут постоянно находиться в равномерно распределенном состоянии в пространстве. Элементы вещества будут стремиться друг к другу, создавая конгломераты.
Мы живем в галактике Млечный Путь – спиральный тип с диаметром в 120000 световых лет. Солнце отдалено от центра на 27000 световых лет (рукав Ориона). В галактике вмещается до 400 млрд. звезд.
Это могут быть сверхгиганты (Бетельгейзе и Ригель), средние (Солнце) или красные карлики (большинство). Если вы смотрели в телескоп, то могли заметить нечеткие пятна. Это другие галактики, в которых также расположены звезды.
В юной Вселенной вследствие гравитационной неустойчивости образовались дискообразные скопления вещества. На границах этих дисков образовывались завихрения и отслаивание вещества. Формировались протогалактические структуры, внутри которых в свою очередь начинался процесс фрагментации – рождались первые звезды.

 С появлением звезд протогалактическое облако становилось звездной системой — галактикой. Галактики различны по объему и форме. Те, что на момент появления имели большую скорость вращения, приобрели форму шара или диска с отходящими от него рукавами-спиралями. Медленно вращавшиеся или неподвижные протогалактические облака превратились в галактики элипсоидной или неправильной формы.

Наша галактика Млечный Путь совместно со звездными системами Магеллановых облаков, галактикой Андромеда и множеством других, образуют Местную группу галактик,, объединенную общим водородным облаком.

 Достоверно известно, что элементами галактик являются: звезды, звездные скопления, пылевые облака, газовые туманности, частицы вещества рассеянные в пространстве, а также всякие экзотические объекты вроде черных дыр и нейтронных звезд. Все галактические элементы взаимосвязаны и подчинены вращению вокруг центра галактики содержащего сверхмассивную черную дыру. Распределение элементов галактики неравномерно. Наибольшая плотность галактических компонентов приходится на плоскость, являющуюся перпендикуляром оси вращения. Также стоит упомянуть наличие вокруг галактики протяженного гало из темной материи.
 Существую две теории рождения Вселенной: теория стационарной Вселенной и теория расширяющейся Вселенной (дання теория более научно обснована). До начала большого взрыва Вселенная была сосредоточена в очень малой области, «сиигулярной точке», она как бы представляла одну гиганскую «одерную каплю» где была исключительно высокая температура (1032градусов Кельвина). В результате гигантского взрыва 13,7 млрд лет тому назад образовалась современная Вселенная. Вселенная нестандартная и расширяющаяся, которая имеет окончание. Часть Вселенной охваченная астрологическим наблюдением (радиус космического горизонта составляет 15 – 20 млрд. световых лет) называются мегогалактикой или нашей Вселенной. Вселенная предположительно состоит из 6 млрд. галактик.
Самой яркой областью любой Галактики в т.ч. и нашей является – ядро. Для нашей Галактики она расположена в направлении созвездие стрельца.
Мы ядро нашей Галактики не видим, т. к. оно закрыто от нас межпланетной пылью. Наша Галактика по внешнему виду имеет линзообразную форму в виде спирали.
Расстояние от Солнца до центра ядра нашей Галактики расположено на 33 тыс. световых лет. Световой год – расстояние, которое проходит свет в вакууме, за один земной год, 365 дней 5 часов 48 минуты 46 секунд. Это расстояние соответствует 2- 1017 км, свет проходит за год 9 млрд. км. Корабль из другой Галактики, двигаясь со скоростью света (; 300 тыс. км/сек) добирается до Земли за 1 млн. лет.
Возникновения гипотезы о происхождении планеты Земля в галактике Млечный путь.
Это очень непростой вопрос. Нельзя посмотреть в прошлое и увидеть, как все начиналось и как все это начало зарождаться. Первые гипотезы возникновения планеты Земля стали появляться в XVII в., когда люди накопили уже достаточное количество знаний о космосе, нашей планете и самой солнечной системы. Сейчас мы придерживаемся возможных двух гипотез возникновения Земли:
 Научное – Земля сформировалась из пыли и газы. Затем Земля была опасным местом для жизни. После долгих лет эволюции поверхность планеты Земля стала пригодной для нашей жизни: атмосфера Земли, пригодная для дыхания, твердая поверхность, растительность.


Рецензии