Свет нейтронных звезд!

Друзья!

Читаю в Сети увлекательные материалы по новейшей астрономии. Узнал много нового про звезды, черные дыры  и гравитационные волны, открытые учеными совсем недавно.
Отступление.

"Столкновение двух нейтронных звёзд – основной источник многих из тяжелейших элементов периодической таблицы во Вселенной. При таком столкновении выбрасывается 3-5% массы; всё остальное превращается в чёрную дыру.

В статье, опубликованной в журнале Astrophysical Journal Letters, авторы описывают первые в мире наблюдения гравитационных волн, возникших при слиянии нейтронной звезды и черной дыры.

Астрофизики лазерно-интерферометрической гравитационно-волновой обсерватории LIGO и детектора гравитационных волн Virgo 5 и 15 января 2020 года зафиксировали два гравитационных события, получившие названия GW200105 и GW200115.В августе этого года астрономы наблюдали за тем, как две нейтронные звезды слились друг с другом, произведя гравитационные волны и огромный по своей силе взрыв. Тогда ученые так до конца и не поняли, что же образовалось в результате: одна колоссальная нейтронная звезда, черная дыра или что-то еще.
Юнь-Вэй Ю в Центрально-Китайском педагогическом университете и Зи-Гао Дай в Нанкинском университете в Китае смоделировали этот взрыв (так называемую килонову), который в реальности может продолжаться от нескольких недель до нескольких месяцев. Согласно их расчетам, на месте столкновения должна остаться одна, но очень большая нейтронная звезда.

Существует три основные теории того, что может произойти при подобном столкновении. В первом случае образуется черная дыра; во втором — получается нейтронная звезда, которая живет всего лишь несколько миллисекунд, после чего превращается или в черную дыру, или в третий вариант — стабильную нейтронную звезду. Если в данном случае все прошло по третьему сценарию, то астрономам повезло наблюдать самую большую нейтронную звезду из когда-либо открытых.

Гравитационные волны, которые ученые наблюдали с помощью LIGO, не смогут прояснить ситуацию. Однако здесь на помощь ученым приходит килонова.
Поскольку изначально нейтронные звезды вращаются по спирали, они могут ускоряться до примерно 1/3 скорости света, объясняет Эдо Бергер из Гарвардского университета. Когда две такие звезды сталкиваются и становятся одной, объект сохраняет этот импульс и, как следствие, вращается невероятно быстро. В процессе этого огромная звезда излучает энергию, которая или дополнительно ускоряет процесс, или, напротив, замедляет его. Если нейтронная звезда замедлится до порогового предела, то неизбежно запустит самопроизвольный процесс по превращению в черную дыру. Точная масса, при которой происходит коллапс небесного тела, до сих пор неизвестна — ясно лишь то, что звезда должна быть колоссальной.

Таким образом, астрономам остается лишь наблюдать за килоновой. Повышение уровня излучаемой энергии будет означать, что две звезды успешно слились в одну. «Для нейтронной звезды килонова представляет собой излучение энергии в разных направлениях, в то время как для черной дыры это просто мощный импульс в одну сторону, своего рода "реактивная струя, которая вызовет заметный гамма-всплеск", говорит Бергер.
Сейчас мнения ученых расходятся. Ю и Дай уверены, что их математическая модель верна и что в результате образовалась огромная нейтронная звезда. Бергер, в свою очередь, указывает на мощный гамма-импульс и уверен, что столкновение привело к появлению новой черной дыры. Кроме того, он отмечает, что энергетический всплеск в модели китайских ученых затмевает сам взрыв, который астрономы наблюдали с помощью телескопов.
В ближайшие несколько недель ситуация должна разрешиться. Если раньше все теории строились на гипотезах, то теперь исследователям предстоит лишь расшифровать фактические данные и выяснить наконец, что же произошло в результате столь феноменальной катастрофы.Второе — слияние черной дыры с массой шесть солнечных и нейтронной звезды с 1,5 солнечной массы — примерно в одном миллиарде световых лет".
А ведь астрономы еще и открыли дверь между мирами!
Из Сети:

"Астрономы предполагают, что одно из самых загадочных явлений космоса - черные дыры - может быть еще таинственнее, чем считалось до сих пор. Пожиратели звезд, сгустки темной материи, обладатели энергии особого рода - все эти наименования давали черным дырам авторы научных теорий, раскрывающих уникальные свойства данных особенных объектов. Теперь к этому списку прибавилось еще одно метафорическое название, придуманное и обоснованное астрофизиками из Германии и Франции, - "червоточины". Возможно, черные дыры выполняют специфическую функцию, служа своеобразными дверями между разными Вселенными.
Сотрудник французского Института космических исследований Тибо Дамур совместно с представителем германского Международного Бременского университета Сергеем Солодухиным разработал новую теорию черных дыр. В соответствии с ней, эти невидимые объекты представляют собой очаги деформации пространственно-временных пластов, обеспечивающие их взаимопроникновение. То есть, проще говоря, это самые что ни на есть дыры между разными Вселенными. В каждом из миров, соединенных космическими "червоточинами", есть свои звезды, галактики и планеты - возможно, даже обитаемые.
С другой стороны, концепция черных дыр предполагает, что попавшие в них объекты бесследно исчезают, а теория дверей между Вселенными подразумевает возможность продвигаться по ним как в одном, так и в другом направлении, так что астрономы пока не решаются провозгласить полную и безоговорочную тождественность между этими понятиями. С другой стороны, дополнительных различий не нашлось, поэтому вопрос пока, судя по всему, останется открытым. Солодухин и Дамур предположили, что одним из вариантов разрешения упомянутого противоречия могут быть раличные функции космических "дверей": одни из них соединяют разные Вселенные, другие выбрасывают объект обратно в тот мир, откуда он и прибыл, а третьи - разрывают его на мельчайшие частицы. Единственный способ проверить - это попробовать погрузиться в загадочный пространственно-временной провал, но, предупреждают исследователи, риск будет слишком велик. Астрономы думают, что, возможно, различие функций "дверей" определяется силой энергетического поля: чем она меньше, тем больше шансов преодолеть разрушающее воздействие черной дыры и проскользнуть в соседнюю Вселенную.
Еще один вопрос - сколько займет путь из одного мира в другой. На него германско-французский научный альянс дал ответ весьма неутешительного характера: скорее всего, переход займет миллиарды лет. Временная протяженность, полагают специалисты, в данном случае должна зависеть от размера "червоточины". Если микроскопические "космические двери" действительно существуют, то пройти через них теоретически возможно буквально за несколько секунд".http://forum.roerich.info/
...Такова она, невероятная космическая БЕСПРЕДЕЛЬНОСТЬ, которой посвящена отдельная большая книга в серии "Агни-Йоги"! И мы, бессмертные Духи, миллионы лет живем  в этой не имеющей ни начала, ни конца вселенской БЕСПРЕДЕЛЬНОСТИ!
То есть, по-сути, мы сами с вами...БЕСПРЕДЕЛЬНЫ, ВЕЧНЫ, РАЗУМНЫ, БОЖЕСТВЕННЫ и идем к ОТЦУ- НЕПОЗНАВАЕМОМУ "ТО", К АБСОЛЮТУ!

Вл.Назаров
***********
1.Что произойдет, если столкнутся две нейтронные звезды?

Нейтронные звезды — сверхплотные остатки звезд, возникающие при взрыве сверхновой звезды. Согласно статье, опубликованной на портале livescience.com, Лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) смогла обнаружить два подобных объекта в момент их мощного столкновения друг с другом. Данное гравитационное волновое событие, по-видимому, было вызвано особенно массивными объектами, которые бросают вызов астрономическим моделям нейтронных звезд. Что же может означать подобное открытие для науки?

Нейтронные звезды — одни из самых малоизученных объектов во Вселенной
Когда два с половиной года назад обсерватория LIGO обнаружила первую пару нейтронных звезд — относительно небольших по космическим меркам объектов, оставленных после смерти массивной звезды, специалистам обсерватории посчастливилось наблюдать их вращение и слияние. Разбиваясь таким образом, тяжелые объекты создают сильную рябь в ткани пространства-времени, которую и заметила американская обсерватория. Из-за того, что общая масса пары нейтронных звезд была в почти в 3,5 раза больше массы Солнца, данное качество выделяет “тяжеловесов” среди аналогичных объектов, никогда не превышающих массу Солнца более, чем в 2,9 раза.

Исследователи не исключают, что сливающиеся объекты на самом деле являлись небольшими черными дырами или же черной дырой в паре с нейтронной звездой. Однако даже если так, то исследователи, возможно, смогли обнаружить самую маленькую черную дыру за всю историю астрономических наблюдений. Всякий раз, когда обсерватория чувствует близость потенциально интересного для изучения космического объекта, она отправляет сигнал тревоги астрономическому сообществу, которое немедленно настраивает доступные ему телескопы на заданный участок неба. Именно так и произошло в тот момент, когда ЛИГО впервые обнаружило процесс слияния нейтронных звезд. Находясь в 130 миллионах световых лет от Земли, уникальное событие помогло землянам открыть эру многомессенджерной астрономии, которая помогает исследователям всего мира получить доступ к большому количеству информации о небесных явлениях.
Кстати говоря, еще больше полезных статей вы можете найти в наших официальных каналах в Telegram и в Яндекс.Дзен.

Пожалуй, самым удивительным в данной ситуации явлением может оказаться то, что колоссальное по космическим меркам событие произошло без какого-либо сопровождающего его видимого взрыва. Ученые считают, что в тот момент, когда нейтронные звезды слились, они постепенно коллапсировали в черную дыру, которая была создана так быстро, что смогла мгновенно поглотить любые исходящие вспышки света.
Как бы то ни было, астрономы продолжат изучать уникальное событие, а также последующие проявления связанных с ним гравитационных волн. Ожидается, что уже через несколько недель в Японии появится новый детектор, который поможет ученым обнаружить и точно определить источник еще большего количества гравитационных аномалий.
https://hi-news.ru/
*************
2.Впервые зарегистрированы гравитационные волны
от слияния нейтронных звезд — и свет от них

Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Нейтронные звезды, самые маленькие и плотные из всех звезд, образуются при взрыве сверхновой. Когда две нейтронные звезды образуются в паре, они вращаются друг вокруг друга, и постепенно теряют энергию, сближаясь и излучая гравитационные волны, пока наконец не сталкиваются. Такое столкновение и наблюдали телескопы LIGO, а через две секунды после — гамма-вслеск достиг космического телескопа Ферми, и в последующие дни и недели астрономы могли наблюдать событие в других электромагнитных диапазонах.

Впервые гравитационные волны были зарегистрированы два года назад — от слияния черных дыр. С тех пор еще три сигнала от черных дыр были приняты детекторами, последний — всего за три дня до этого события.

С самого начала работы LIGO ученые ждали регистрации волн от столкновения нейтронных звезд, так как они довольно распространены во Вселенной, а пары нейтронных звезд уже наблюдались с помощью радио телескопов. Например, двойной пульсар Халса-Тейлора, открытый в 1974, на котором впервые было косвенно доказано существование гравитационных волн: на протяжении 40 лет наблюдений две нейтронные звезды сблизились, потеряв часть энергии вращения на излучение гравитационных волн. Примерно через 300 миллионов лет эти две нейтронные звезды столкнутся, произведя сигнал, подобный тому, что LIGO наблюдала в этот раз.

Гравитационно-волновой сигнал, GW170817, был зарегистрирован 17 августа 2017 в 8:41 EDT. Автоматическая программа обработки данных обнаружила сильный сигнал на одном из детекторов LIGO, а двумя секундами позднее космический телескоп Ферми увидел всплеск гамма излучения. Телескопы и LIGO обмениваются данными о потенциальных событиях, и на основе такого совпадения между сигналами было разослано оповещение другим телескопам по всему миру, которые начали наблюдения в различных диапазонах. Сигнал также присутствовал и в данных второго детектора LIGO, но был изначально не принят автоматикой из-за глитча (о чем ниже).

Анализ данных с LIGO позволил оценить параметры источника сигнала — двух нейтронных звезд массами от 1.1 до 1.6 солнечной и диаметром около 20 км. В отличие от предыдущих наблюдений слияния черных дыр, где само слияние занимало миллисекунды, этот сигнал длился около 100 секунд. Источник сигнала находился гораздо ближе, чем предыдущие — всего около 130 миллионов световых лет. Как результат, сигнал оказался гораздо чище от шума — соотношение сигнал-шум в 32.4, а значит, лишь раз в 80000 лет такой сигнал может случайно быть произведен флуктуациями шумов в детекторах.

В момент детектирования работал также европейский детектор Virgo, но на нем сигнала не оказалось, что помогло определить местоположение источника: Virgo был расположен по отношению к волне так, что оказался не чувствителен к ней (здесь есть видео-иллюстрация к объяснению). Подробнее о том, как три детектора помогают улучшить локализацию источника, можно прочитать тут.

Совместное наблюдение гамма-всплеска, гравитационных волн и видимого света позволили определить не только область на небе, где произошло событие, но и галактику NGC 4993, к которой звезды принадлежали.

Астрономы наблюдали короткие всплески гамма-излучения на протяжении многих десятилетий, но не знали точно, как они возникают. Основным предположением было, что этот всплеск происходит в результате слияния нейтронных звезд, и теперь наблюдение гравитационных волн от этого события подтвердило теорию.

Когда нейтронные звезды сталкиваются, основная часть их вещества сливается в один сверхмассивных объект, излучая “огненный шар” из гамма излучения (тот самые короткий гамма-всплеск, зарегистрированный через две секунды после гравитационных волн). После этого возникает так называемая килонова, когда вещество, оставшееся после столкновения нейтронных звезд уносится от места столкновения, излучая свет. Наблюдение за спектром этого излучения позволило определить, что тяжелые элементы, такие как золото, рождаются именно в результате килоновых. Ученые наблюдали после-свечение на протяжении недель после события, собирая данные о процессах, происходивших в звездах, и это явилось первым достоверным наблюдением килоновой.

Нейтронные звезды — это сверхплотные объекты, образующиеся после взрыва сверхновой. Давление в звезде столь высоко, что отдельны атомы не могут существовать, и внутри звезды находится жидкий «суп» из нейтронов, протонов и других частиц. Чтобы описать нейтронную звезду, ученые используют уравнение состояния, связывающее давление и плотность вещества. Существует множество вариантов возможных уравнений состояний, но ученые не знают, какие из них правильные, поэтому гравитационные наблюдения могут помочь разрешить этот вопрос. На данный момент наблюденный сигнал не дает однозначного ответа, но помогают дать интересные оценки на форму звезды (которая зависит от гравитационного притяжения ко второй звезде).

Интересным открытием оказалось, что наблюдавшийся короткий гамма-всплеск является самым близким к Земле, но в то же время слишком тусклым для такого расстояния. Ученые предположили несколько возможных объяснений: возможно, луч гамма-излучения был неравномерной яркости, или мы увидели только самый его край. В любом случае возникает вопрос: ранее астрономы не предполагали, что такие тусклые всплески могут быть расположены так близко, и могли ли они тогда пропустить такие же тусклые всплески, или же неправильно интерпретировать их как более далекие? Совместные наблюдения в гравитационном и электромагнитном диапазоне могут помочь дать ответ, но на данном уровне чувствительности детекторов такие наблюдения будут достаточно редкими — в среднем 0.1-1.4 в год.

Кроме гравитационного и электромагнитного излучения, нейтронные звезды излучают потоки нейтрино в процессе слияния. Детекторы нейтрино также работали над поиском этих потоков от события, но не зафиксировали ничего. В целом, этот результат был ожидаем — как и в случае гамма-всплеска, событие слишком тусклое (или мы наблюдаем его под большим углом), чтобы детекторы могли его увидеть.
Скорость гравитационных волн

Так как гравитационные волны и световой сигнал произошли от одного источника с очень большой вероятностью (5.3 sigma), и первый световой сигнал пришел через 1.7 секунд после гравитационного, мы можем ограничить скорость распространения гравитационных волн с очень большой точностью. Предполагая, что свет и гравитационные волны излучались одновременно, а задержка между сигналами произошла из-за того, что гравитация быстрее, можно получить верхнюю оценку. Нижнюю оценку можно получить из моделей слияния нейтронных звезд: предположить, что свет был испущен через 10 секунд после гравитационных волн (в этот момент уже все процессы точно должны были завершиться) и нагнал гравитационные волны к моменту достижения Земли. Как результат, скорость гравитации равна скорости света с огромной точностью

Для нижней оценки можно использовать и большую задержку между излучением, и даже предположить, что сначала был испущен световой сигнал, что понизит точность пропорционально. Но даже в этом случае оценка получается чрезвычайно точной.

Используя те же знания о задержке между сигналами можно значительно повысить точность оценок на лоренц-инвариантность (разности между поведением гравитации и света при преобразовании Лоренца) и принцип эквивалентности.

Хочется отметить, что задержка между гравитационным и гамма сигналом в случае справедливости стандартной теории (скорости света и ГВ точно равны, нет никаких хитрых модификаций ОТО) может быть объяснена астрофизическими факторами. Ученые предполагают несколько возможных сценариев. Основной гипотезой образования пучков гамма-излучения является коллапс остатка от слияния нейтронных звезд в одну черную дыру, и поток гамма-частиц возникает в момент коллапса. Если после слияния нейтронных звезд они образовали одну большую (неустойчивую) нейтронную звезду, она могла просуществовать от нескольких секунд до минут перед коллапсом в ЧД, что вызвало задержку. Другим объяснением задержки может быть необходимость для релятивистского пучка гамма-лучей пройти через газовую оболочку, сброшенную в процессе слияния. Эта оболочка может быть непрозрачна для излучения, и прежде чем пучок «пробьет» окно в ней, проходит определенное время.

Постоянная Хаббла связывает расстояние между двумя объектами со скоростью их удаления друг от друга за счет расширения Вселенной: v = H0*d. Это наиболее фундаментальная величина в космологии, определяющая размер Вселенной и основные законы космологии. Определение постоянной Хаббла — сложная задача, так как измерение расстояний между объектами обычно нетривиально.

Обычно для измерения расстояний используется межгалактическая шкала расстояний (космическая лестница), когда разные методы измерений используются для измерения близких и далеких расстояний. Многие из этих методах основаны на знании светимости объектов, называемых стандартными свечами (например, цефеиды или сверхновые) — тогда, измерив их яркость, можно посчитать расстояние. Таким образом была рассчитана постоянная Хаббла в проекте SHoES (телескоп Хаббл).

Ученые измерили постоянную Хаббла и другим образом — по наблюдению параметров реликтового излучения на телескопе Планк, и получили другое значение постоянной Хаббла, не согласующееся с измерениями SHoES. Это различие слишком велико, чтобы быть статистическим, но пока не известны причины расхождений оценок. Поэтому необходимо независимое измерение.

Распределение вероятности для постоянной Хаббла с использованием гравитационных волн (синий). Пунктиром обозначены интервалы 1? и 2? (68.3% и 95.4%). Для сравнения показаны интервалы 1? и 2? для предыдущих оценок: Планк (зеленый) и SHoES (оранжевый), которые не сходятся друг с другом.

Гравитационные волны в данном случае играют роль стандартных свечей (и называются стандартными сиренами). Наблюдая амплитуду сигнала на Земле и моделируя его амплитуду в источнике, можно оценить, насколько она уменьшилась, и узнать тем самым расстояние до источника — независимо от любых предположений на постоянную Хаббла или предыдущие измерения. Наблюдение светового сигнала позволило определить галактику, где располагалась пара нейтронных звезд, а скорость удаления этой галактики была хорошо известна по предыдущим измерениям. Отношение между скоростью и расстоянием и является постоянной Хаббла. Важно, что такая оценка совершенно независима от предыдущих оценок или космической шкалы расстояний.

Одного измерения оказалось недостаточно, чтобы разрешить загадку различия в оценках Планка и SHoES, но в целом оценка уже хорошо соответствует известным значениям. Учитывая, что предыдущие оценки основываются на статистике, собранной на протяжении многих лет, это очень значительный результат.

Статья опубликована в Nature (тут можно прочитать), а тут можно найти краткое изложение (английский).
Немного о LIGO и глитчах

Верхняя панель показывает глитч в данных LIGO-Livingston, и также явно демонстрирует наличие чирпа. Нижняя панель показывает безразмерную амплитуду колебаний, ”strain" (величина, которой мы описываем величину сигнала в LIGO и Virgo) в момент глитча. Это короткий
(длится всего около 1/4 секунды), но очень сильный сигнал. Подавление уменьшает глитч до уровня оранжевой кривой, которая показывает уровень фонового шума, всегда присутствующего в детекторах LIGO.

Только один из детекторов LIGO увидел сигнал в автоматическом режиме, поскольку на детекторе в Ливингстоне в момент события произошел «глитч». Этим термином называют всплеск шума, похожий на хлопок статики в радиоприемнике. Хотя гравитационно волновой сигнал был очевидно заметен человеческому глазу, автоматика отсекает подобные данные. Поэтому понадобилась очистка сигнала от глитча, прежде чем данные могли быть использованы детектором. Глитчи появляются в детекторах все время — примерно раз в несколько часов. Ученые классифицируют их по форме и длительности и используют эти знания для улучшения детекторов.

Мы зарегистрировали гравитационные волны от двух компактных объектов, и наблюдение электромагнитного излучения говорит о том, что один из них был нейтронной звездой. Но второй мог быть и черной дырой малой массы, и хотя ранее таких черных дыр никто не видел, теоретически они могут существовать. Из наблюдения GW170817 нельзя определить точно, было ли это столкновение двух нейтронных звезд, хотя это и более вероятно.

Второй любопытный момент: а чем стал этот объект после слияния? Он мог стать либо сверхмассивной нейтронной звездой (самой массивной из известных) или самой легкой из известных черных дыр. К сожалению, данных наблюдения недостаточно, чтобы ответить на этот вопрос.

Наблюдение слияния нейтронных звезд в о всех диапазонах — потрясающе богатое на физику событие. Количество данных, полученных учеными только за эти два месяца позволило подготовить несколько десятков публикаций, и гораздо больше будет, когда данные станут общедоступными. Физика нейтронных звезд гораздо богаче и интереснее физики черных дыр — мы можем напрямую проверять физику сверхплотного состояния вещества, а также квантовую механику в условиях сильных гравитационных полей. Эта уникальная возможность может помочь нам наконец найти связь между общей теорией относительности и квантовой физикой, которая до сих пор ускользала от нас.

Это открытие еще раз показывает, насколько в современной физике важна совместная работа многих коллабораций из тысяч людей.
https://habr.com/ru/
****************
3.Астрономы засекли второе столкновение нейтронных звезд

25 апреля 2019 года две нейтронные звезды на расстоянии около 520 миллионов световых лет столкнулись вместе и объединились в один объект.
Он называется GW190425, и хотя это всего лишь второе подобное столкновение, которое астрономы когда-либо видели, оно уже расширяет наше понимание этих колоссальных космических столкновений.
«Источник GW190425 представляет собой ранее не обнаруженный тип астрофизической системы», — написали исследователи в своей статье, представленной в «Astrophysical Journal Letters» и еще не рецензированной.
Первое столкновения нейтронных звезд было обнаружено в августе 2017 года, и оно дало великолепное изобилие данных в различных средах наблюдения — так называемой астрономии с несколькими мессенджерами.
Теперь новое обнаружение подтвердило это.
«Мы обнаружили второе событие, совместимое с двойной системой нейтронных звезд, и это является важным подтверждением события августа 2017 года, которое ознаменовало собой захватывающее новое начало для мульти астрономии два года назад», — сказал физик и пресс-секретарь Дева Джо ван ден Бранд. Маастрихтского университета в Нидерландах.
Есть несколько очень важных отличий.
В отличие от первого столкновения нейтронных звезд (называемого GW170817), при столкновении двух звезд GW190425 не было обнаружено света. Это, вероятно, частично потому, что это было так далеко, и частично потому, что один из двух детекторов LIGO был отключен, когда было обнаружено событие; и сигнал был слишком слабым, чтобы быть обнаруженным детектором Virgo.
Но даже без оптических данных сигнал гравитационной волны можно декодировать, чтобы обнаружить массу, ориентацию и вращение сталкивающихся объектов.
Основываясь на данных, команда обнаружила, что одна из нейтронных звезд в двойной системе в 1,4 раза больше массы Солнца, а другая примерно в 2 раза больше массы Солнца.
«Мы были очень удивлены общей массой этой древней двойной системы нейтронных звезд, которая примерно в 3,4 раза превышает массу нашего Солнца, поскольку она намного превышает массу известных двойных нейтронных звезд в нашей собственной галактике», — сказал физик-теоретик Сьюзан Скотт. Австралийского национального университета и Центра передовых технологий ARC для открытия гравитационных волн.
Объект, возникший в результате столкновения GW190425, также представляет собой интригующую перспективу, потому что он превратился в нечто, называемое разрывом массы, и находится между нейтронными звездами и черными дырами.
И нейтронные звезды, и черные дыры являются сверхплотными остатками мертвой звезды, но мы никогда не видели черную дыру, которая в 5 раз меньше массы Солнца, или нейтронную звезду, которая примерно в 2,5 раза больше массы Солнца.
Мы пока не знаем, привела ли GW190425 к появлению маленькой черной дыры или большой нейтронной звезды, но она — и объект, созданный GW170817, который также до сих пор неизвестен — может дать некоторые ответы об этом разрыве массы.
Команда представила свои результаты на 235-м заседании Американского астрономического общества на Гавайях. Сообщение Астрономы только что обнаружили эпическое столкновение нейтронных звезд появились сначала на RW Space.
https://zen.yandex.ru/funscience
******************
Материалы из Сети подготовил Вл.Назаров
Нефтеюганск
30 июня 2021 года.


Рецензии