Три траектории для одной частицы

Постановка задачи:

Имеем 2 покоящихся тела одинаковой массы m на дистанции d друг от друга.

Требуется составить уравнение движения тел в поле взаимного тяготения.

Решение:

Запишем фундаментальные законы:
Сила F = G*m^2 / x^2;
Ускорение a = F / m;
Движение:
x(t) = d - a*t^2 / 2;

Тогда получаем уравнение:
x(t) = d - G*m*t^2/ x(t)^2;

Или:
x(t)^3 = d*x(t)^2 - G*m*t^2;

Это параметрическое кубическое уравнение.

А теперь ВНИМАНИЕ!
Сколько корней у кубического уравнения ?

Правильно, оно имеет 3 решения.
А это значит что каждая частица в поле взаимного тяготения будет иметь 3 траектории движения для каждого момента времени.


Рецензии
Удивительно и что то напоминает
Вы знаете.я как то в 2009 году написал такой палеологизм
----
Если что то не существует в трех местах,то это не существует
---
у меня много палеологизмов на тему вот такой нелинейной физики

Геннадий Палеолог   23.02.2022 11:24     Заявить о нарушении