Гиперзвуковая вода 3 этап

Современные сведения о строении воды

В начале 20-го века знания о воде стабилизировались, и ничего не предвещало новых достижений.

В 1909 году датский биохимик Сёрен Сёренсен (1868-1939), возглавлявший лабораторию в пивной компании «Карлсберг» в Копенгагене, разработал методы определения концентрации ионов водорода в растворах, и ввел водородный показатель Рн (который называют и кислотностью) и шкалу Рн. Рн-метры,- приборы, работающие по шкале Сёренсена, используются и в настоящее время для контроля воды и пищевых продуктов на ее основе.

Прошло 10 лет и свою огромную лепту в изучение воды стали вносить физики-ядерщики.

В 1920 г. британский физик Эрнест Резерфорд (1871-1937) и независимого от него американский физик Уильям Харкинс (1873-1951) предсказали существование стабильного изотопа водорода, имеющего атомную массу 2 -  2Н.

В 1929 г. американские физики Херрик Джонстон (1898-1965) и Уильям Джиок (1895-1982) экспериментами доказали существование стабильных изотопов кислорода с атомными массами 17 и 18 – 17О, 18О. До этого открытия химики считали, что кислород существует только в виде стабильного изотопа с массой 16 – 16О. От массы изотопа 16О были рассчитаны массы всех известных к 1929 г. химических элементов. И неожиданно оказалось, что масса кислорода О в «Таблице Менделеева» не 16,0, а 16,0035. Открытие Джонстона и Джиока было очень значительным, оно заставило пересчитать все атомные массы. Кроме того, пошатнулась сама идея вписать все изотопы химического элемента в одну «клеточку» таблицы Менделеева. Особенно ярко это проявилось в 1932 г.

Сегодня за опорную массу принята масса изотопа углерода 12С. А «табличная» масса кислорода О = 15,9994 рассчитана с учетом распространенности его стабильных изотопов на Земле: 16О - 99,759 %, 17О - 0,037%, 18О - 0,204%. Химия, казавшаяся в 19-м веке точной наукой, превратилась в оценочную науку, где масса элемента зависит от статистики нахождения тех или иных изотопов элемента на Земле, а «Таблица Менделеева», которую в будущем создадут, к примеру, для Марса будет отличаться от нашей «земной» таблицы.

В 1931 г. американский физик Гарольд Юри (1893-1981) теоретически обосновал существование стабильного изотопа водорода 2Н и назвал его дейтерием, а в 1932 г. практически получил его окись – тяжелую воду, ее формула имела такой вид: (2Н)216О. Параллельно с Юри существование дейтерия в 1931 г. доказал американский физик Фрэд Аллисон (1882-1974) и предсказал американский физик Раймонд Бёрдж (1887-1980).

В 1933 г. американский физик Гилберт Льюис (1875-1946) методом многократного электролиза первым получил тяжелую воду из обычной воды и выделил из нее дейтерий 2Н. Он же обнаружил, что существует полутяжелая вода, имеющая в своем составе два разных изотопа водорода, т.е. такую формулу – (2Н)(1Н)16О.

Американские физики несколько лет изучали тяжелую воду (2Н)216О и обнаружили, что она химически существенно отличается от обычной воды – имеет другую массу, другие температуры замерзания и кипения, сладковатый вкус. Тяжелая вода стабильна  и присутствует повсеместно – в речной воде на тонну воды приходится около 150 мл. тяжелой воды, в морской воде около 165 мл. тяжелой воды.  Радиоактивной опасности тяжелая вода не представляет.

В 1934 году австралийский физик Маркус Олифант (1901-2000), работавший в Англии с Резерфордом, при проведении ядерной реакции получил полустабильный (период полураспада до 14 дней) изотоп водорода 3Н, названный тритием. Тритий может образовывать супертяжелую воду (3Н)216О, которая радиационно опасна, но накопиться в водоемах не может, ввиду быстрого распада трития.

В настоящее время известны три изотопа водорода Н и три стабильных изотопа кислорода О (всего у кислорода 14 изотопов). Считается, что тонна речной воды может содержать: 2 литра воды (1Н)218О, 300 мл. воды (1Н)217О, 300 мл. полутяжелой воды (2Н)(1Н)16О, 150 мл. тяжелой воды (2Н)216О, и остальное это обычная вода (1Н)216О. Следовательно, в 500 мл. воды в вашем чайнике может быть около 2,5 мл. «другой» воды, в которой около 0,4 мл. тяжелой и полутяжелой воды.

Изотопный состав воды зависит от ее происхождения, возраста, этапов «жизни». В тонком плане явно отличаются изотопные составы речной воды, морской воды, колодезной воды, ключевой воды, воды полученной таянием снега, воды полученной таяньем льда, горной воды, воды текущей с ледников, воды из айсбергов и т.п. Нужно ли это все учитывать? Наука и практика однозначного ответа не дает, а дешевых и надежных методов исправления изотопного состава воды не существует. Следствием этого явилось то, что практически все эксперименты с водой проведены не с обычной водой (1Н)216О, а с этой водой с некоторым набором ее изотопных «братьев».

Сложной оказалась структура молекулы воды – здесь и далее под этим термином мы понимаем обычную воду (1Н)216О – и взаимное расположение молекул жидкой воды в занимаемом объеме.

В молекуле воды атомы водорода относительно атома кислорода образуют равнобедренный треугольник, расположение атомов в молекуле воды, в состоянии жидкости,  показано на рис. Размеры на рисунке приведены в ангстремах А, как это принято в ядерной физике. Связано это с тем, что один ангстрем приблизительно равен диаметру орбиты электрона в атоме водорода. С другой стороны 1А=10-10м. Отсюда следует, что по диаметру блюдца с водой (15 см) могут поместиться около  миллиарда молекул воды.
Размеры молекулы, при изменении водой своего агрегатного состояния, меняются незначительно: молекула пара сжимается на 1%, молекула льда расширяется на 4%. Последнее свойство приводит к тому, что лед плавает в обычной воде, и водоем замерзает не всем своим объемом, а последовательно сверху - вниз.

Однако молекулы воды далеко не стабильны. Даже самая чистая вода обладает способностью к химической диссоциации – распаду некоторой части пар молекул Н2О в объеме жидкости на отрицательный ион гидроксила (ОН_) и положительный ион гидроксония (Н3О+). Этот процесс носит обратимый характер и может быть охарактеризован такой формулой:

2Н2О = (ОН_) + (Н3О+)= 2Н2О

Свойство диссоциации у воды приводит к тому, что даже чистая вода, не имеющая никаких посторонних примесей, например дистиллированная по ГОСТ 6709-72, может иметь при температуре +180С проводимость около 0,75 микросименс.

От автора - ресурс не поддерживает верхний и нижний индексы - и это приводит к плохому написанию химических формул - изотопов и т.д.


Рецензии