Теория матричных нитей

ТЕОРИЯ САМООРГАНИЗОВАННОСТИ
Теория матричных нитей

НАИВНОСТЬ ДЕТСКАЯ ВО ГЛУБИНЕ СРЕДНЕВЕКОВЫХ ЗНАНИЙ – СЦЕНАРИЙ СХОЛАСТИЧЕСКИХ ЖЕЛАНИЙ!

Теория в теории – не первая идея, пришедшая в голову человеку. В рамках одной теории (теории самоорганизованности) в данном рассказе показана другая теория – матричных нитей.

Я человек физических наук, сугубо технический, лингвистику не изучал. А тут со специалистами, познающими происхождение букв и цифр (этимологию), в рамках общей философско-методологической дисциплины, исследующей знание как таковое, его строение, структуру, функционирование и развитие (эпистемологию), удалось найти ЦИФРОВУЮ связь, объясняющую зарождение и деление живой клетки и развитие эмбриона. К таким открытиям я отношусь с осторожностью, поскольку всё, что касается мироздания, для многих учёных остаётся загадкой.

В основе метода, позволяющего приоткрыть тайны мироздания, лежит КОДОВАЯ МАТЕМАТИКА, – до такой степени непопулярная в современном мире, что о ней даже мало кто слышал! Однако, в нарушение всех представлений теоретиков, что привыкли изъясняться в точных науках на языке математического анализа, в моих изысканиях нет формул, понятных только людям с высшим образованием, и то не всем. Этим рассказом я возрождаю цифровую импровизацию, позволяющую всем желающим вникнуть, разобраться, убедиться в достоверности положений теории:

ПОЛОЖЕНИЕ I

КАКИЕ БЫ СЛУЧАЙНЫЕ 9 СОБЫТИЙ НИ ПРИНИМАЛИСЬ В МАТЕМАТИЧЕСКИХ КОДАХ ЗА ИСТИННЫЕ ПРОСТРАНСТВЕННЫЕ ПОСТРОЕНИЯ ВО ВРЕМЕНИ, ИХ МАТРИЧНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ВИДОИЗМЕНЯЕТСЯ БЕСКОНЕЧНО И НЕ ПОВТОРЯЕТСЯ ДВАЖДЫ.

Для тех, кто не знаком с предыдущими рассказами, повторю, что В ПРИРОДЕ НЕТ КОНСТАНТ, ВЫДУМАННЫХ УЧЁНЫМИ! И всё-таки, если задуматься, что-то есть такое, что связывает в единое целое, ограничивает в закономерности, самоорганизовывет в разряды числовой последовательности, что к примеру в природе отражено в цикличностях и происходящих энергетических процессах и событиях. Конечно же это ЦИФРЫ!!!

Сколько б констант не выводили учёные умозрительно, одни константы связаны с другими, но я не встречал более четырёх одновременно в одной формуле. Очень много аналитических приёмов ввёл Леонард Эйлер, в частности число е, которое известно как основание натурального логарифма, математическая «константа»:

е = 2,7182818284 5904523536 0287471352 6624977572 4709369995 9574966967…

Более полную версию для числа е, кому интересно, найдите в Интернете.

Сравните с числом «бичичи»: bchch = 2,71, – похоже на “е”, но несколько меньше.

Как видно, «бичичи» – не иррациональное, а определённое по значению число.

Точно так и для значения Пи = 3,1415926535 8979323846 2643383279…

Сравните с делением: 22/7 = 3,142857 142857 142857 (142857)…, предложенным Архимедом (III век до н.э.) для соотношения длины к диаметру круга. Производная от деления 22/7 несколько больше, нежели исчисляемое на компьютере Пи.

Понятно, что ни в числе Эйлера, ни в значении Пи нет никакой закономерности, – это бесконечные хаотично выстроенные наборы из знаков. Если не принимать во внимание, что каждая из цифр от 1 до 9 что-то означает в энергетическом плане, то даже такое обстоятельство, как производная от деления целых чисел на число 2,71 или на 7, позволяет сделать однозначный вывод: число 2,71 и производная от деления 22/7 дают некоторые закономерности, как и цикличности в природе!

Вот примеры деления на число 2,71:

1/2,71 = 0,3690 (03690)…; 2/2,71 = 0,7380 (07380)…; 3/2,71 = 1,1070 (11070)…;
4/2,71 = 1,4760 (14760)…; 5/2,71 = 1,8450 (18450)…; 6/2,71 = 2,2140 (22140)…;
7/2,71 = 2,5830 (25830)…; 8/2,71 = 2,9520 (29520)…; 9/2,71 = 3,3210 (33210)…

Примечательно, несмотря на кажущееся разнообразие цифр после запятой, мне абсолютно ясно, что всюду наблюдается пропорциональность значений.

Кто увлекается математикой, знает, что деление на 2 можно вычислить быстрее, заменив умножением на 5 и делением на 10, ибо 1/2 = 5/10. Соответственно, пропорции 1/2 = 2/4 = 3/6 = 4/8 при дальнейшем делении на 2 можно исчислять по-разному, в том числе в десятичных дробях, например: (3*5)/60 = 1/4 = 0,25.

Если производную от деления 22/7 разделить на 2, получим результат:

22/14 = 11/7 = 1,571428 (571428)…

Мы обнаруживаем перестановку одних и тех же цифр после запятой! Ожидаема перестановка производных цифр и при повторном делении на 2:

22/28 = 11/14 = 0,7 857142 (857142)… с сохранением группировки из 6 цифр после запятой, но с небольшим нюансом: производная стала меньше единицы.

И так далее, ожидаемое деление на 8,16,32,64… – в результате дробления будет соблюдаться та же самая последовательность, но с перестановками и нюансами уменьшения первых цифр после запятой.

К тому же, эта же последовательность сохраняется и при делении на 5:

(22/7)/5 = 22/35 = 0,6 285714 (285714)… с небольшими перестановками.

Мало кто задумывается, ибо этому не учат в школах, что 2 и 5 – зеркальное отражение одной и той же цифры! Но это так и есть!!

В группировке из 6 повторяющихся после запятой цифр 22/7 = 3,(142857)… нет из натурального ряда цифр: 3,6,9. Они появляются, если делить (22/7) на эти числа:

(22/7)/3 = 1,047619 (047619)…
(22/7)/6 = 0,523809 (523809)…
(22/7)/9 = 0,349206 (349206)…

Своеобразная числовая последовательность при делении (22/7) ещё раз на 7:

(22/7)/7 = 0,44897959183673469387755102040816…

Казалось бы, тут в знаках нет никакой закономерности. Ан, нет! Есть не только одна закономерность после запятой, а сразу несколько, сменяющих друг друга:

1) Исходное 22*2 = 44; 44*2 = 88; 88*2 = (1)76; 176*2 = (3)52; 352*2 = (7)04;
704*2 = (14)08; 1408*2 = (28)16; 2816*2 = (56)32; 

Ограничение цифр – парами, если после умножения на 2 получается более двух – тогда цифра, что в скобках, добавляется к предыдущей. Проследите:

88 + (1) = 89; 76 + (3) = 79; 52 + (7) = 59; 04 + (14) = 18; 08 + 28 = 36; 16 + (56) = 72;

2) Здесь выявлена и пошла закономерность с понижением 22 на 4: 18; 36; 72.

Посмотрите далее: 18*2 = 36; 36*2 = 72; 72*2 = (1)44; 144*2 = (2)88; 288*2 = (5)76;
576*2 = (11)52; 1152*2 = (23)04; 2304*2 = (46)08. Сравните цифры, получаемые вне скобок с цифрами в исходном варианте: 44; 88; 76; 52; 04; 08, – повтор!

То же ограничение парами, и цифры, что в скобках, прибавляются к предыдущим:

72 + (1) = 73; 44 + (2) = 46; 88 + (5) = 93; 76 + (11) = 87; 52 + (23) = 75; 04 + (46) = 50.

3) С этого момента наблюдается уже третья последовательность: 5; 10; 20; 40; 80; (1)60; (3)20 и так далее, т.е. сохраняется один принцип построения зависимости.

ЭТО ЕСТЬ КОЛЕБАТЕЛЬНЫЙ ПРОЦЕСС В КОДОВОЙ МАТЕМАТИКЕ!

Изначальное число 22 понизилось до 18, а после повысилось до среднего 20. Как колебания в маятнике Чеботаева или словно покачивание на волнах!

* * *
Чем мне не нравится привычная аналитическая математика? – сам задаю себе этот «шкурный» вопрос. Да нет же, она мне нравится! Меня смущают безумные порывы математиков доводить логику вещей до абсурда!

Откуда получается незначительная, но существенная разница в подходе к тем или иным исчислениям? Зачем до бесконечности рассчитывать число Эйлера или значение для Пи? Кому нужны так называемые «запредельные» цепочки цифр?

Ведь ясно, к примеру, что число Пи – это приближение вписанного правильного многогранника в окружность определённого диаметра. Увеличивая количество граней многогранника, мы добиваемся более гладкой линии окружности, только и всего. Но в природе абсолютно всё движется, колышется, а посему не существует неподвижных кругов и окружностей! ВСЁ В ПРИРОДЕ ДЫШИТ! В любой системе, хотят того учёные-физики или не хотят, всегда нужно предусматривать условия для ДЫХАНИЯ СИСТЕМЫ, – некие полости, посредством которых возможны сами собой расширяющиеся и сужающиеся процессы.

Если такие полости не предусматривать, то система не будет живой, ибо без дыхания невозможна жизнь как таковая. ПРИРОДА – ЖИВАЯ СИСТЕМА!

Отныне раз и навсегда мы не имеем права пренебрегать очевидным! Посмотрите рисунки перед текстом. Я вновь прибегнул к картинке из свободного доступа в Интернете, на которой показаны скрутки нитей (проводов). Какую с минимальным количеством нитей скрутку выбрать, чтобы система могла дышать? Мы говорим о гибкой упругой эластичной нити, а не об абсолютно жёсткой, в которой возможны крутильные колебания, но не долгие и неэффективные (высокозатратные).

Одинарную нить в расчёт не принимаем, поскольку в ней нет симметрии, той, что необходима для приближения к наблюдаемым в природе: в ДНК, белках и т.д.

Если сравнить две скрученные нити толщиной 0,2 мм и четыре толщиной 0,1 мм, то обе имеют больше недостатков, чем преимуществ. Вдвое толстая нить может раскручиваться, но ограничена в скрутке (не хватает степени свободы). Вторая не содержит минимальное количество нитей – не проходит по этому параметру. Нам остаётся выбрать скрученную воедино из ТРЁХ нитей! Оптимальным вариантом (что видно из рисунка) является скрутка трёх нитей толщиной 0,15 мм.

Общая номинальная толщина существенна (3*0,15 = 0,45 против 2*0,2 = 0,4), есть возможность совершать крутильные колебания в пределах того же сечения, что в скрутке проводника 2*0,2 мм (обладает достаточной степенью свободы), а так же удовлетворяет условию минимального количества нитей в скрутке (3).

В качестве модели, чтоб показать, как работает ТЕОРИЯ матричных нитей, мне понадобилась в прямом смысле модельная резинка, показанная в закрученном, напряжённом состоянии между двумя цветными карандашами. Если отпустить в свободное состояние, модель примет произвольную форму, и сколько б я раз ни пытался воспроизвести скрутку и отпустить, форма резинки никогда не повторится – это и есть наглядное пособие для вышеприведенного ПОЛОЖЕНИЯ I.

Две из различных форм показаны на фото, причём одна форма похожа на яйцо, в середине которого как бы произвольно получилась «полость», точно такая, как в настоящем яйце, что служит для дыхания зародыша цыплёнка. Воспринимайте не буквально, конечно, ибо это только модель, для наглядности. Вторая форма ещё более причудливая – в ней просматривается «скрипичный музыкальный ключ», а также узлы, что реально образуются при раскрутке и расслаблении нити, при её колебательных процессах. Видна «восьмёрка», что свойственна энергетическим процессам, есть «полость» для дыхания системы, а ещё перпендикуляр, что мне напоминает букву «Г».

А теперь перейдём ко второму ПОЛОЖЕНИЮ теории.

ПОЛОЖЕНИЕ II

КАКОЙ БЫ ОДНОРОДНОСТЬЮ, ГИБКОСТЬЮ, СБАЛАНСИРОВАННОСТЬЮ И СИММЕТРИЧНОСТЬЮ НИ ОБЛАДАЛА ЭНЕРГЕТИЧЕСКАЯ НИТЬ, ПОВТОРИТЬ В ТОЧНОСТИ КОМБИНАЦИЮ ЗВЕНЬЕВ ЕЁ ПРИ ЗАКРУТКЕ И РАСКРУТКЕ НЕВОЗМОЖНО!

Данное положение подобно первому, но относится не к математическим кодам.
В энергетическом плане второе положение универсально для любого состояния вещества: жидкого, твёрдого, газообразного, плазменного. В следующем рассказе я проведу сравнение с существующими значимыми общепризнанными теориями.

Об энергетических потоках в веществах также речь пойдёт позже, но касательно данной теории можно представить себе упругий скрученный тремя нитями контур, состоящий из отдельных звеньев одной и той же цепочки однородного вещества, например воды. Тогда представленная модельная резинка являет собой кластер, в растянутом (напряжённом) состоянии или, наоборот, в свободном – зависит от сегрегаций ЭФИРА. Другими словами, степень свободы и скованности в матрице ЭФИРА, являющей собой «сеть» или ячеистую структуру, зависит от натяжения нитей, как на картинке, расположенных меж двумя карандашами (размер bchch).

Но и это ещё не всё. Каждую отдельную нить модели можно принять за молекулу, а отдельное звено – за атом. Упорядоченные крутильные колебания в натянутом состоянии контура определяют количество энергии, выделяемое в результате трения нитей в каждом звене, что в свою очередь создаёт вокруг проводника поле или электронное энергетическое облако. Если рассматривать поперечное сечение проводника, в нём три нити (три жилы) будут создавать видимые кварки (конечно, при ярком освещении и высокоточной измерительной аппаратуре, позволяющей фиксировать колебания системы). Понятия молекула, атом, кварки – условные!

Учёные же вправе воображать и соображать по-своему! С уверенностью заявляю, что с разного ракурса обзора трёх скрученных меж собой нитей видны в ярком свете: одна светлая нить и две в полутени, либо наоборот, две светлые, а одна в тени. Учёным-физикам второй вариант «кварков», видимо, предстоит обнаружить!

Самым важным и умопомрачительным является третье ПОЛОЖЕНИЕ:

ПОЛОЖЕНИЕ III

НЕСМОТРЯ НА НЕВОЗМОЖНОСТЬ ПОВТОРЕНИЯ В ТОЧНОСТИ ПРОЦЕССОВ И СОБЫТИЙ, ВЫСТРАИВАЕМАЯ ЦЕПОЧКА В МАТРИЧНОЙ СИСТЕМЕ ЯВЛЯЕТ СОБОЙ ЦИКЛИЧНОСТЬ И СБАЛАНСИРОВАННОСТЬ В ЭНЕРГЕТИЧЕСКОМ И В МАТЕРИАЛЬНОМ ПЛАНЕ, КАК И ГЕОМЕТРИЧЕСКУЮ ПРОПОРЦИОНАЛЬНОСТЬ ПРИ ИЗМЕНЕНИИ ДВИЖЕНИЯ В ПРОСТРАНСТВЕ И ВО ВРЕМЕНИ!!

Таким образом, ХАОСА В ПРИРОДЕ НЕ НАБЛЮДАЕТСЯ!

* * *
Теперь перехожу непосредственно к цифрам, определяющим кодовую математику и показывающим колебательные (волновые) процессы. В ПРИРОДНОЙ МАТРИЦЕ зависимости взаимосвязаны числами Фибоначчи и «золотым сечением».

Но для начала сравним пространственную модель с плоской: кубоид Эйлера явно отличается от прямоугольного треугольника, но расчёты сторон производятся по одной и той же теореме Пифагора. Гляньте в мои записи из блокнота – проверил соотношения сторон для кубоида, найденного Эйлером в 1719 году.

Размеры сторон (а = 44; b = 117; с = 240) в точности дают размеры диагоналей:
d = 125; е = 244; f = 267. Проверьте самостоятельно!

Однако, кубоид Эйлера не даёт «скрутки», что у параллелепипеда.

Я нашёл в Интернете как минимум две вариации размеров параллелепипеда, в которых сохраняется приближённая зависимость, как в кубоиде Эйлера. Целые числа не получаются из-за того, что я принимаю в расчёт проекции, применяя всё ту же теорему Пифагора. Но при небольшой «скрутке» граней параллелепипеда должны получиться целые числа! Особливо заинтересовал меня вариант, где стороны параллелепипеда: 271; 106; 103.

Напомню, число bchch для разных сред имеет различия, и для космоса равно 271!

То есть, число 271, являющее собой одну из граней параллелепипеда, я соотношу с матричной ячейкой ЭФИРА для космического пространства! Число 106 также примечательно. Его ещё называют «божественное число» (код мироздания), имея ввиду изложенную и показанную в рассказе «Триуглометрия» последовательность группировок после запятой из одних и тех же ТРИНАДЦАТИ ЦИФР!

Альтернатива для числа Пи ~ 3,1415…, исчисляемая соотношением 333/106:

333/106 = 3,14 1509433962264 (1509433962264)… – до бесконечности.

Пока я не анализирую данную последовательность, но вывожу сумму группировки из 13 знаков: 54 или (27 * 2)! Эта сумма нам пригодится в дальнейшем, т.к. она же – половина от одного из самых известных чисел в нумерологии: 108 (54 * 2)! 

Далее выстраиваю алгоритм, подобный описанному ранее (22/7)/7, но уже для чисел Фибоначчи. Выстраивается довольно легко, и надо сказать, это тщательно скрываемый хорошо забытый метод, коим пользовались древние математики.
Суть в том, чтоб при составлении последовательности сложные числа приводить к простым (например, для чисел Фибоначчи 5 + 8 = 13, и далее 1 + 3 = 4).

Не стану ссылаться на информацию из многочисленных источников в свободном доступе в Интернете о замечательных свойствах числового ряда Фибоначчи, где гармония развития в окружающей нас природе отражается в точной пропорции, что приближает к соотношению «золотого сечения»:

1/1,6180339887… = 0,6180339887… - после запятой все знаки совпадают.

Сами можете найти в Интернете или в моих опубликованных рассказах: более глубокие аналитические изыскания, связанные с мирозданием.

Двойная спираль Фибоначчи имеет “раскрутку”, алгоритм которой начинается так:

0 + 1 = 1; 1 + 1 = 2; 1 + 2 = 3; 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13 (1+3 = 4);

Далее можно складывать по-разному: 8 + 13 = 21 (2 +1 = 3); 8 + 4 = 12 (1 + 2 = 3), что особой роли не играет, ибо результат получим тот же. И после числа 21 идёт построение последовательностей: 13 + 21 = 34 (3 + 4 = 7); 13 + 3 = 16 (1 + 6 = 7), только двумя несколько различными методами подсчёта.

Конечный результат последовательности просто “ошарашивает”:

123584371898876415628191 (123584371898876415628191)… – повтор 24 знаков до бесконечности!

Кстати, я эту последовательность не сам вывел, а нашёл у Владимира Михайлова – русский исследователь описал в 1997 году и был убеждён, что Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности (опубликовано в econet.ru). Этот ряд периодичный и период составляет 24 знака. Получив этот период, Михайлов выдвинул интересное предположение: не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?

Продолжения его размышлений я не нашёл, зато данная последовательность помогла методом комбинирования разглядеть в ней связывающую цикличность.

* * *
Математики, как правило, знают по нескольку способов решения одних и тех же задач. Начиная с 4-го класса школы, решая задачки, я тоже научился производить действия разными вариантами. Большие числа можно раскладывать в матрицу. В средних школах этому не учат, потому что есть таблица умножения, калькулятор, а современному подростку намного легче пользоваться прогрессивным методом, нежели высчитывать в столбик или пользоваться логарифмической линейкой и бабушкиными счётами.

Однако, изучая методы счисления древних египтян, диву даёшься, как просто и легко удавалось во II тысячелетии до нашей эры перемножать большие числа и высчитывать геометрически площади земель, в том числе площадь круга. Выше я показал результаты деления 22/7 = 3,142857 (142857)…, а египтяне имели другой способ. Они эмпирическим путём, укладывая камни, высчитали соотношение 8/9, – площадь круга диаметром 9 примерно равна площади квадрата со стороной 8.

Проверяем: Пи (3,1415926535…) /4 * 9^2 = 63,6172512333…
В варианте у Архимеда: Пи (22/7) /4 * 9^2 = 63,6 428571 (428571)…
Площадь квадрата со стороной 8 соответственно: 8 * 8 = 64.

У меня тут же появилась своя версия для быстрого исчисления числа Пи:

Действие 1) 9 * 9 = 81; действие 2) 8/81 = 0,098765432 (098765432)…; (можно для запоминания округлить полученную последовательность до 0,0987654321).

Действие 3) корень квадратный из 9,87654321 = 3,1426968052…

Равносильно считать (хотя приближённо) пропорцию: 8/81 = (Пи/10)^2 = Пи^2/100, откуда Пи = (корень кв. из 800)/9.

Ещё более прост табличный способ перемножения чисел. Последовательности по сути своей, размещённые по двум столбцам, представляют простейшую матрицу.
Например, чтоб перемножить 7 и 22, древние египтяне составляли два столбца, первый удваивали в цифрах, начиная с 1 (1,2,4,8…), искали сумму (1 + 2 + 4 = 7), дающую сложение трёх цифр; а после трижды удваивали цифру 22:
22 + 44 + 88 = 154. Это и есть искомый результат! Для нас нетривиально.

Ещё легче перемножить 8 и 22 таким же образом: 88 + 88 = 176!

Но мне сейчас важно показать не позиционную систему счисления, с помощью которой решается конкретная математическая задача, а ДИНАМИЧЕСКУЮ, где последовательности из цифр видоизменяются и циклически повторяются!

В качестве матрицы я выбрал магический квадрат 3х3, известный более четырёх тысячелетий (с 2200 г. до н.э.) – почему ему дали название «магический», мне непонятно. Более того, следующий «магический» квадрат 4х4, выведенный позже, назвали вдобавок «дьявольским», хотя что в нём дьявольского???

Для динамической матрицы из цифр я соединил 4 «магических» квадрата 3х3, как показано на рисунке. Понятно, сумма по вертикали, горизонтали и диагонали удвоилась: вместо 15 стала 30. В центре, где 4 «шестёрки», квадрат делится на симметричные левую и правую части, верх и низ, где соблюдается зеркальность цифр (отражается мнимая область). Далее могу из таких числовых квадратов составить куб, размещая на всех 6 поверхностях его последовательности точно в таком же исполнении. Но это уже для следующего этапа развития данной теории.

А пока мне предстоит показать, каким образом был создан алгоритм для 24 цифр, что получился у Владимира Михайлова. Комбинируя несколькими вариантами, нашёл весьма интересный и приемлемый для наглядности. Расположил цифры последовательности столбиком 4х6 следующим образом:

1 2 3 5
8 4 3 7
1 8 9 8
8 7 6 4
1 5 6 2
8 1 9 1

Подсчитал сумму каждого ряда по вертикали: 27; 27; 36; 27.

Эти числа (27 и 36) тоже являются составляющими числа из нумерологии: 108.

После упрощения в пропорции к 108 для каждого ряда по вертикали: 4; 4; 3; 4.

(27 * 4 = 108; 36 * 3 = 108; напомню также: 27 * 2 = 54; 54 * 2 = 108).

При бесконечности в последовательности из 24 цифр, преобразование в виде матрицы сохраняет ту же самую последовательность, как в магическом квадрате. Отсюда вывел повторяемость цикличности из цифр: 4434 4434 4434 4434 …

Я даже нарисовал эту цикличность в виде микровихря (спирали), а также показал чёрточками проекцию в плоскости, представляющую собой СОТЫ, как в пчелином ульи. Понятно, там тоже, как всюду в природе, соблюдаются числа Фибоначчи!

На следующих страницах блокнота вывел алгоритм исходя из следующего.

Для удобства развернул матрицу из цифр и представил в зеркальном отражении:

1 8 1 8 1 8  (сумма 27)
2 4 8 7 5 1  (сумма 27)
3 3 9 6 6 9  (сумма 36)
5 7 8 4 2 1  (сумма 27)

В ЭТОМ ВИДЕ МАТРИЦУ ИЗ ЦИФР ПРИНЯЛ ЗА ИСХОДНОЕ СОСТОЯНИЕ!

Уже в этом сочетании цифр прослеживается закономерность. Так, 2-й и 4-й ряды – зеркальное отражение с некоторой перестановкой, где последовательность из группировки 22/7 = 3,142857 142857 (142857)… – после запятой видоизменена.

Теперь представьте себе морские волны, где накатывается следующая волна взамен той, что вышла на берег. Цифры в матрице – гребни и впадины фрагмента волны, состоящей из четырёх горизонтальных рядов по 6 цифр в каждом ряду.

Цифра 1 – минимальный уровень впадины, а цифра 9 – максимальный уровень гребня волны. Таким образом можно полагать, что данный фрагмент спокойный, в нём нет «девятого вала», который, несомненно, в цифрах должен образоваться.

Далее идея алгоритма простая: я переношу первый ряд последовательности ниже фрагмента матрицы, показывая тем самым следующую набегающую волну. И да, считаю набегающую волну точно такой, как в исходном варианте. (В дальнейшем я комбинировал по 2 и по 3 одинаковые набегающие волны одновременно, суть алгоритма от этого не меняется, поэтому в данном рассказе это не показано).

Итак, исходное состояние матрицы приобретает вид из 5 радов (30 цифр):

1 8 1 8 1 8  (сумма 27) – в следующем фрагменте этот ряд исчезает
2 4 8 7 5 1  (сумма 27)
3 3 9 6 6 9  (сумма 36)
5 7 8 4 2 1  (сумма 27)
1 8 1 8 1 8  (сумма 27) – ниже этого ряда появится новый, исчисленный ниже ряд

С этого момента начинаю подсчёты. Общая сумма в 5 рядах: 27 * 4 + 36 = 144.
Суммирую цифры по вертикальным рядам и привожу к простой:

1 + 2 + 3 + 5 + 1 = 12 (1 + 2 = 3), – получаю цифру 3;
8 + 4 + 3 + 7 + 8 = 30 (3 + 0 = 3), – получаю снова цифру 3;
1 + 8 + 9 + 8 + 1 = 27 (2 + 7 = 9), – получаю цифру 9;
8 + 7 + 6 + 4 + 8 = 33 (3 + 3 = 6), – получаю цифру 6;
1 + 5 + 6 + 2 + 1 = 15 (1 + 5 = 6), – получаю цифру 6;
8 + 1 + 9 + 1 + 8 = 27 (2 + 7 = 9), – получаю цифру 9.

В итоге получена такая последовательность: 3 3 9 6 6 9, то есть как в 3-м ряду исходной матрицы! Нужно отметить ещё две особенности, что распространяются на весь алгоритм. Суммируем все полученные числа в вертикальных рядах:

12 + 30 + 27 + 33 + 15 + 27 = 144, т.е. точно такая сумма, как в горизонтальных.

Вторая особенность: число 144 сводим к простому 1 + 4 + 4 = 9.

В дальнейшем абсолютно все суммы, полученные по горизонтальным рядам и вертикальным будут одинаковыми, а приведённая к простому всегда будет 9!
Остаётся встроить 339669 в следующий фрагмент матрицы из волновых цифр:

2 4 8 7 5 1  (сумма 27)
3 3 9 6 6 9  (сумма 36)
5 7 8 4 2 1  (сумма 27)
1 8 1 8 1 8  (сумма 27)
3 3 9 6 6 9  (сумма 36)

Дальнейшие расчёты фрагментов не привожу из-за большого объёма, показываю на фото исписанный блокнот. Если суть алгоритма ясна, то каждый может и сам потренироваться – составить третий, четвёртый и далее фрагменты.

Я добавлю здесь результаты первых 36 исчислений – суммарные сведённые к простым цифрам, что последовательно присовокупляются как набегающая волна к последующему фрагменту матрицы. Начну с первого счисления и отмечу, что ни единого повтора из фрагментов матрицы в сравнении с исходным состоянием уже не встречается:

1) 1 8 1 8 1 8 (сумма 27) – добавлено к исходному состоянию матрицы
2) 3 3 9 6 6 9 (сумма 36)
3) 5 7 8 4 2 1 (сумма 27)
4) 8 1 8 1 8 1 (сумма 27)
5) 4 8 7 5 1 2 (сумма 27)
6) 3 9 6 6 9 3 (сумма 36)
7) 5 1 2 4 8 7 (сумма 27)
8) 7 8 4 2 1 5 (сумма 27)
9) 9 9 9 9 9 9 (сумма 54)
10) 1 8 1 8 1 8 (сумма 27)
11) 7 8 4 2 1 5 (сумма 27)
12) 2 7 2 7 2 7 (сумма 27)
13) 8 4 2 1 5 7 (сумма 27)
14) 9 9 9 9 9 9 (сумма 54)
15) 9 9 9 9 9 9 (сумма 54)
16) 8 1 8 1 8 1 (сумма 27)
17) 9 3 3 9 6 6 (сумма 36)
18) 7 8 4 2 1 5 (сумма 27)
19) 6 3 6 3 6 3 (сумма 27)
20) 3 6 3 6 3 6 (сумма 27)
21) 6 3 6 3 6 3 (сумма 27)
22) 4 5 4 5 4 5 (сумма 27)
23) 8 7 5 1 2 4 (сумма 27)
24) 9 6 6 9 3 3 (сумма 36)
25) 3 9 6 6 9 3 (сумма 36)
26) 3 3 9 6 6 9 (сумма 36)
27) 9 3 3 9 6 6 (сумма 36)
28) 5 1 2 4 8 7 (сумма 27)
29) 2 4 8 7 5 1 (сумма 27)
30) 4 2 1 5 7 8 (сумма 27)
31) 5 4 5 4 5 4 (сумма 27)
32) 7 5 1 2 4 8 (сумма 27)
33) 5 7 8 4 2 1 (сумма 27)
34) 5 4 5 4 5 4 (сумма 27)
35) 8 4 2 1 5 7 (сумма 27)
36) 3 6 3 6 3 6 (сумма 27)

Создаётся впечатление, что всюду комбинируют те же гребни и впадины волн, но они располагаются при чередовании либо в разной последовательности, либо в самих волнах (в пределах ряда) происходит видоизменение (перестановка цифр).

Ясно, что каждый фрагмент – это определённая последовательность в матрице.

Для тех, кто решил самостоятельно поупражняться, приведу три фрагмента для сверки:

Например, фрагмент 9 (со всплеском, общая сумма рядов – 171):

4 8 7 5 1 2 (сумма 27)
3 9 6 6 9 3 (сумма 36)
5 1 2 4 8 7 (сумма 27)
7 8 4 2 1 5 (сумма 27)
9 9 9 9 9 9 (сумма 54)

Или фрагмент 31 (умеренный, общая сумма рядов – 144):

9 3 3 9 6 6 (сумма 36)
5 1 2 4 8 7 (сумма 27)
2 4 8 7 5 1 (сумма 27)
4 2 1 5 7 8 (сумма 27)
5 4 5 4 5 4 (сумма 27)

Или фрагмент 34 (спокойный, общая сумма рядов – 135)

4 2 1 5 7 8 (сумма 27)
5 4 5 4 5 4 (сумма 27)
7 5 1 2 4 8 (сумма 27)
5 7 8 4 2 1 (сумма 27)
5 4 5 4 5 4 (сумма 27)

Также стоит отметить, что суммарное число по горизонтальным и вертикальным рядам от фрагмента к фрагменту меняется. Здесь встречаются следующие числа:

144; 153; 171; 162; 189; 198 – максимальная; 135 – минимальная (7 вариаций, как цветов в радуге, как нот в музыке).

Максимальная волна образуется при двойном всплеске, фрагмент 18:

9 9 9 9 9 9 (сумма 54)
9 9 9 9 9 9 (сумма 54)
8 1 8 1 8 1 (сумма 27)
9 3 3 9 6 6 (сумма 36)
7 8 4 2 1 5 (сумма 27)

* * *
Сколько раз пытался найти хоть какие-то объяснения образованию морских волн и наглядный (показательный) пример, доступный для моего уразумения! Научная литература предлагает абстрактные картинки и сложные расчёты. И вот наконец, сам для себя вывел приемлемый вариант, изложенный в данной теории!

ПОЛОЖЕНИЕ IV

ЧТОБЫ ПОНИМАТЬ И ЛЮБИТЬ МАТУШКУ-ПРИРОДУ, НЕ НУЖНЫ ИЗЫСКАНИЯ В ФАНТАЗИЯХ, ДОСТАТОЧНО ТЩАТЕЛЬНО В ЯВИ ИЗУЧАТЬ ОКРУЖАЮЩУЮ СРЕДУ НАШЕГО ОБИТАНИЯ – ДЕННО И НОЩНО!

Кто не понимает, что ИСТИНА В ПРИРОДЕ, тот в сущности не знает ничего!

К сожалению, эпоха (человеческого разума на данном этапе развития) не может принять открытия, находящиеся за пределами всеобщего понимания.

Что такое ЭЗОТЕРИКА? Вряд ли сегодня кто-то может ответить внятно на этот вопрос. Я тоже не могу. Но к эзотерике отношу даже такой факт, что происходит в эти дни, когда публикую данную теорию матричных нитей, которая объясняет и матрицу волновых чисел, что есть в природе. Именно в эти дни показывают цикл передач на канале «Культура», будто специально, сегодня: Математика и подъём цивилизации (Греция – Происхождение элементов). Совпадение НЕ СЛУЧАЙНО – это и есть основа эзотерики! Если не удалось посмотреть по телевизору, найдите в Интернете и обязательно посмотрите, для концентрации своих знаний!

Что было известно В ДРЕВНОСТИ, особенно актуально в мире безумия сейчас!

Математика – ключ ко всем тайным знаниям и предметам. Ключ от замка. Замком же является сама ПРИРОДА, а не интерпретации учёных о ней. ИЗУЧАЙТЕ САМИ ПРИРОДУ!

Помните, МИРОМ УПРАВЛЯЕТ ГАРМОНИЯ: 2 / 3!!

Помните: 0 – НАЧАЛО БЕСКОНЕЧНОСТИ!!

Да, и вот ещё что:
НЕ ИЩИТЕ ЛЁГКИХ ПУТЕЙ В РАЗВИТИИ СОБСТВЕННОГО УМА!!!

P.S. О ЦИФРОВОЙ СВЯЗИ, объясняющей зарождение и деление живой клетки и развитие эмбриона – в будущих рассказах.


Рецензии
Алекс, день добрый!
Какой Вы умный, пишете такие интересные статьи/рассказы!
Вы утверждаете, что являетесь истинным математиком, а не лингвистом, однако пишете без ошибок! Не всякий лингвист так грамотно напишет))

Меня заинтересовало несколько мыслей, но я сразу их не записала, поэтому, возможно, вернусь к Вашей работе ещё раз.

Согласна с Вами, что миром управляет математика. Ваша цитата: "Получив этот период, Михайлов выдвинул интересное предположение: не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации?"
Алекс, а Вы лично не пробовали предсказывать будущее, исходя из этого кода?!?!
Знаете, я повёрнута на магии, если честно.
Читала не совсем внимательно, потому что постоянно терзала себя мыслью: "А я ещё искала учителя математики, который бы помог написать моей внучке за 11 класс научную работу по математике?! Никто не берётся, хотя все преподают!".
Да, такой парадокс! Министерство образования ввело такую "повинность" всем ученикам. Раньше было проще и интереснее)).

И ещё цифры:
9 9 9 9 9 9 (сумма 54)
9 9 9 9 9 9 (сумма 54)
8 1 8 1 8 1 (сумма 27)
9 3 3 9 6 6 (сумма 36)
7 8 4 2 1 5 (сумма 27)
Сумма в скобках в каждом случае даёт цифру 9. Она повторяется во всех рядах в Вашей работе. Девять - это сказочное и магическое число. Даже отдельные молитвы надо читать 108 раз - в сумме это 9. Вы ответ знаете или он во фразе: "Ищите за тридевять земель..."?!

С признательностью,

Котенко Татьяна   24.01.2024 15:14     Заявить о нарушении
Спасибо Татьяна за отзыв, добрые слова.
Иногда и у меня проскакивают ошибки, перепроверяю тексты, правлю постоянно. Честно, в аттестате были оценки "хорошо" по русскому языку и литературе. А по точным наукам - "отлично".
Магией, мистикой, предсказаниями увлекается супруга, поэтому тоже "подслушиваю", в курсе событий.

Каждая цифра не случайна, а 9 - действительно магическая. Она замыкает ряд простых чисел.
Задачка про плоскости Евклида подогнана мной под нужный результат - число 11, напоминающее римское II. Основана она на правиле, что запомнил с детства (из занимательной математики). Это правило простое: абсолютно любое число умноженное на 9 даст такой результат, что при сложении полученных цифр между собой (до простого значения) получим тоже цифру 9.

Расстояние от Солнца до Земли и диаметр в 108 раз больше, - это надумано Кассини, XVII век. Наверное, был подвержен магии чисел. У меня про это - в рассказе: http://proza.ru/2022/02/09/1110

Если появится желание у внучки использовать любые мои наработки, а не только по математике, буду только рад.

С уважением и наилучшими пожеланиями,

Алекс Чистяков   24.01.2024 16:12   Заявить о нарушении
На это произведение написаны 2 рецензии, здесь отображается последняя, остальные - в полном списке.