Глава 1. Самоорганизующиеся системы

В этой главе будет выстроена методологическая основа для дальнейшего исследования. Для этого можно выделить два подхода. Во-первых, допустимо предположить  возможность описания интеллекта, как завершенной, установившейся сущности. Наверное,  действительно такую теорию можно построить. Но мы знаем, что человеческий интеллект система эволюционирующая. Ребенок рождается, возможно, не чистым листом бумаги, но и развитым интеллектом он очевидно не обладает. Человек растет интеллектуально в процессе личного эволюционного развития, что наводит на почти очевидную мысль, что к построению любого интеллекта можно подойти также, как природа подошла к созданию интеллекта человеческого. А именно, разумно предположить, что в его основе лежит небольшое количество простых принципов, позволяющих ему развиваться от самой простой системы до сколь угодно сложной.

Из сказанного выше следует, что нет необходимости описывать сложную завершенную систему, называемую нами интеллектом, достаточно описать, что-то простое, состоящее из некоторого количества базовых элементов, но способного развиваться в заданном направлении. Таковое описание будет состоять из двух составляющих. Во-первых, стартовое состояние системы и, во-вторых, метод развития.
Такие системы существуют в природе, они называются самоорганизующимися. Собственно любой живой организм, это самоорганизующаяся система. Есть таковые, составленные из большого количества примитивных организмов. Например, муравейник или пчелиная семья, представляют собой очень  яркий пример самоорганизующихся систем, способных к росту до определенного предела. И сама живая природа в целом также является примером самоорганизующейся системы.

Ясно, что самоорганизующиеся системы это не только системы интеллектуальные. Но интеллект все же можно представить как частный результат процесса самоорганизации и, следовательно, его можно определить, как самоорганизующуюся систему, но для начала требуется определение систем, которые далее мы будем рассматривать как базовые для всего дальнейшего исследования.

Самоорганизующиеся системы. Свойства.

Попробуем выделить основные качества такой системы. Очевидно, самоорганизующаяся система способна сохранять свою структуру, это как минимум. И есть примеры систем способных развиваться не только количественно, но и качественно. Для сохранения структуры в системе должны действовать консервативные силы, компенсирующие внешние воздействия. Простейший пример самоорганизующейся системы с компенсирующей консервативной силой – это волчок. Для него, внешнее воздействие – это силы, действующие против оси вращения, а консервативную силу представляет накопленный крутящий момент.

Большая часть самоорганизующихся систем существуют в стабильной среде с определенным набором воздействий, поэтому вполне возможен и стабильный набор консервативных сил компенсационного характера. Понятно, что стабильность системы возможна только при равенстве консервативных сил и сил внешнего воздействия. При преобладании последних, система начинает разрушаться, при усилении консервативных сил, они перестают быть консервативными, в прямом смысле этого слова, и система может начать рост.

Это если говорить о системах однородных. Таковыми являются помимо примера гомеостата (волчок лишь один из них), кристаллы, сообщества примитивных живых существ, обладающих элементами организации. Самые яркие примеры таковых сообществ это муравьи, термиты, пчелы.  Но заметим, - большие, старые термитники могут содержать миллионы особей, но большой термитник, большой муравейник или большая пчелиная семья структурно ничем не отличается от маленькой. Независимо от количества членов есть минимальный структурный элемент – насекомое или в примере неорганического кристалла – молекула вещества.

Таким образом, мы приходим к еще одной важной идее самоорганизующихся развивающихся  систем. Они создаются из набора примитивных функциональных элементов, способных выстраиваться в систему, свойства которой, уже не сводятся к свойствам составляющих элементов. Ее макрофункции определяются конфигурацией, в которую соединяются микроэлементы.

В дальнейшем мы разделим два вопроса - как функционирует самоорганизующаяся система и как выполняется ее сборка. В отношении сборки можно выделить два механизма. Первый – это сборка под воздействием внешней силы. Простейший пример это переориентация магнитных диполей под воздействием внешнего поля. В условиях отсутствия внешней силы, все сообщество диполей находится в состоянии хаоса, что внешне выражается в отсутствии единого магнитного поля тела. Под внешним воздействием диполи ориентируются в одном направлении, внутренние  электромагнитные поля диполей больше не компенсируются и можно увидеть активное поведение куска вещества. Более того, сообщество сориентированных диполей получает способность поддерживать свое такое состояние.

Самоорганизацию под внешним воздействием можно наблюдать в любом сообществе состоящим из однородных элементов, способных на типовую реакцию. При этом функциональная сложность таких элементов может не играть существенной роли, важна только способность реагировать одинаковым образом. Такое поведение демонстрирует достаточно большое человеческое сообщество, что кстати, позволяет создавать эффективные психологические технологии управления социумом.

Еще один важный аспект сборки – это наследственность. Самоорганизующаяся система не возникает одномоментно, в момент возникновения она достаточно примитивна, если мы говорим о системах не созданных искусственно, затем она проходит путь индивидуальной  эволюции. Вопрос заключается в том, где находится программа этой эволюции. А источников может быть два. Внутренний, если система имеет родителя (в самом широком смысле этого слова), то механизм с некоторыми исходными данными может быть передан от родителя. И источник может быть внешним, система, находясь под внешним воздействием, может адаптироваться к существованию в среде. Мы будем эту функцию самоорганизующихся систем называть обучением. Пример самообучающихся систем созданных искусственно уже известен, это нейросети. 
На момент написания этого текста нейросети имеют только программную реализацию, построенную на аппаратной основе классических компьютеров, но в теории нейросеть должна представлять собой некоторое устройство, составленное из  примитивных технических элементов условно называемых нейронами.

Главный вопрос устройства любых, а не только интеллектуальных самоорганизующихся систем заключается в том, каким образом множество  упорядоченных элементов может формировать сложную реакцию, качественно отличную от функционала примитивных образующих элементов. Второй  вопрос о том, каким образом качественный рост функционала приводит к возможности интеллектуальной реакции или точнее к интеллектуальному поведению.

Определение интеллектуального поведения было дано во введении к книге, которое можно рассматривать как постановку задачи, но это проблема всей книги. И прежде чем к ней приступать, необходимо ответить на первый вопрос – что создает возможность качественного роста функционала.
Но и этот вопрос нуждается в подготовке. Прежде чем переходить к рассмотрению возможностей качественного роста требуется дать анализ проблемы устойчивости самоорганизующейся системы. Ясно, что и устойчивость и рост без качественного изменения и усложнение системы имеют общий корень – это устройство функционального элемента и принципы их соединения в общую систему. И сейчас видимо самое время дать более строгое определение самоорганизующейся системы.

Определение. Самоорганизующаяся система – это совокупность взаимодействующих простых элементов  способная реагировать на внешние воздействия, с сохранением собственной структуры (консервативная система) или с ее развитием (динамическая система).

Ясно, что это только лишь самое общее определение, в отличие от математических определений, не содержащее в себе всю полноту информации и требующее дальнейшего разворачивания смысла. Это определение необходимо для того, чтобы зафиксировать два важнейших момента. Самоорганизующаяся система строится из простых элементов с минимальным набором возможностей. Это, во-первых. И, во-вторых, в ней действуют процессы, стремящиеся как минимум сохранить структуру, и как максимум ее развивать. Но это уже вопросы, обсуждение которых будет продолжено далее. 

Текст в более читаемом формате можно увидеть здесь:

https://lotos-khv.ru/programm/my_view/index.htm


Рецензии