Пример получения энергии - прямолинейное движение
В принципе мы постоянно осуществляем эту операцию, когда забиваем гвозди. Вот попробуйте гвоздь в дерево не вбить, а вдавить плавным постоянным нажимом. Затратите много усилий, но результат будет слабенький. Так происходит по той причине, что при постоянном давлении мы тратим только свою собственную энергию, не привлекая к работе физический вакуум. Зато, когда бьем молотком по гвоздю даже не очень сильно, мы включаем в работу физвакуум и заставляем его выполнять основную работу по забиванию. Замах руки с молотком обеспечивает выполнение стадии "медленное ускорение" с передачей физвакууму некоторой нашей энергии. Зато когда молоток резко тормозится на шляпке гвоздя, начинает действовать стадия "резкое торможение", обеспечивая поступление из вакуума гораздо большей энергии, которая и загоняет гвоздь в дерево. Хотя некоторые мои оппоненты утверждают, будто энергия тут не при чем, а гвоздь входит в дерево посредством импульса движения, на самом деле энергия очень даже при чем: импульс пропорционален квадратному корню из энергии и для получения большого импульса нужно располагать большой энергией.
В 70х годах прошлого столетия белорусский физик Сергей Ушеренко наткнулся на странный энергетический парадокс сверхвысокого появления энергии из пустого места. Он обстреливал массивную стальную мишень мелкими быстролетящими песчинками и обнаружил, что отдельные песчинки прожигали мишень насквозь. Не все песчинки, а только некоторые, случайно попадающие в имеющиеся на поверхности мишени мелкие трещины. Для такого сквозного прожигания требовалась энергия в 1000 — 10 000 раз больше кинетической энергии песчинки. А удельное энерговыделение в прожигаемом канале составляло 10(9) ; 10(10) дж/кг, что заметно выходило за рамки химических процессов. Кроме того, спектральный анализ срезов показал наличие в образованных каналах новых химических элементов, которых ранее в мишени не было. Также неоднократно регистрировали присутствие газа радона, который обычно сопровождает ядерные реакции деления. И наконец, рентгеновская пленка рядом с опытной установкой оказывалась засвеченной, что указывало на присутствие некоторого излучения.
Эти особенности заставили многих ученых, выступающих с альтернативных позиций, склониться к мнению, будто в эффекте Ушеренко мы столкнулись с холодным ядерным синтезом. Однако такая точка зрения не согласуется с хорошо известными и пока не опровергнутыми законами ядерной физики. Вспомним, как именно выглядит график зависимости энергии связи ядра от массового числа: кривая вначале от водорода резко идет вверх, достигая максимума 8.7 Мэв/нуклон в районе железа, а затем плавно спадает к тяжелым трансурановым элементам. По этой причине выделение энергии возможно только при реакциях деления тяжелых элементов (что уже осуществили в атомных электростанциях) или при реакциях синтеза легких элементов (что хотят осуществить в будущих термоядерных электростанциях). Но для железа любые ядерные реакции — хоть деления, хоть синтеза — идут с поглощением энергии, а не с выделением. И потому ядерные реакции не могут обеспечить нужного выброса энергии в эффекте Ушеренко.
Конечно в используемой мишени присутствовали различные легирующие элементы. Однако в составе периодической таблицы все легирующие добавки лежат рядом с железом. И потому они тоже не могут обеспечить нужный выброс энергии.
И сейчас я предлагаю собственное объяснение данному феномену. При соударении быстролетящей песчинки с мишенью внутреннее электрическое поле мишени на очень краткий миг резко возрастает и его напряженность становится достаточной для того, чтобы разделить постоянно рождающиеся из вакуума и снова уходящие в вакуум виртуальные пары частица+античастица. Частицы разлетаются в стороны и из виртуальных становятся реальными. Античастица тут же реагирует с частицей внутренней структуры металла, порождая гамма-излучение, засвечивающее рентгеновскую пленку. И это же гамма-излучение, сталкиваясь с ионами кристаллической решетки, включает ядерные реакции, изменяющие элементный состав мишени. В ходе ядерных реакций появляется газ радон.
Создать генератор вакуумной энергии на основе данного эффекта в принципе можно. Но технические трудности могут оказаться слишком велики. Эксперименты показали, что не всякая песчинка прожигает мишень. Это делают лишь те, которые попадают прямо в центр уже имеющейся естественной микротрещинки в поверхности мишени либо искусственно созданной. В этом случае песчинка начинает работать как кумулятивный снаряд и прожигает металл. Но если песчинка ударится о мишень рядом с микротрещиной, она просто отлетит в сторону без всякого эффекта. А энергия на разгон песчинки была затрачена.
Чтобы до максимума повысить количество песчинок, прожигающих металл, надо всю поверхность мишени покрыть микротрещинками и направлять песчинки точно в их центр. А с этим могут возникнуть огромные трудности. Песчинка летит со скоростью порядка 1 км/сек и на электрическое поле не реагирует. Как тогда ею управлять и направлять в нужное место?
Конечно, можно заменить песчинки на мелкую стальную дробь и такой способ опробовал некто Рой Паттерсон из США, получив выброс энергии при соударении в 980 раз больше кинетической энергии летящих дробинок. Но даже в этом случае трудности управления полетом дробинок кажутся колоссальными. Если дробинки летят последовательно одна за другой, их полетом еще можно худо-бедно управлять, изменяя электрическое поле в нужную сторону. Но в этом случае высвобождаемая из вакуума энергия окажется слишком малой для практических целей. А если запустить параллельно сразу несколько сот или даже тысяч дробинок, управление становится невозможным. Потому что электрическое поле, направляя одну дробинку точно в центр намеченной микротрещинки, будет сбивать с правильного курса все остальные дробинки.
У данного способа извлечения энергии из вакуума есть еще один недостаток, который может сделать практическую реализацию способа недостижимой. Недостаток заключается в том, что несмотря на все усилия по управлению полетом песчинок или дробинок многие из них будут лететь мимо и соударяться с мишенью вне микротрещины. Такие песчинки просто рикошетят в стороны. До тех пор, пока мы имеем дело с экспериментальной установкой, подобный рикошет проблем не создает. Но совсем иная картина будет иметь место в случае установки промышленного назначения: отлетающие в стороны от мишени песчинки станут изнутри разрушать стенки аппарата, вызывая быстрый выход его из строя.
И наконец последний не то чтобы недостаток, а нежелательная особенность: в аппарате Ушеренко энергия физвакуума высвобождается в форме тепла, а не в форме электричества. Если нужно именно тепло, тогда никаких проблем нет. Но чаще нужно все же электричество. Поэтому рядом с аппаратом Ушеренко придется ставить огромную массу оборудования для преобразования тепла в электричество. И это сразу удорожает всю систему и делает ее непригодной для индивидуального использования.
Известна еще одна технология получения энергии по этому принципу, которая хотя и менее эффективна, зато и менее самразрушительна, и потому она может оказаться более предпочтительной с практической точки зрения. В 1952 году (по другим данным, в 1955 году) некто Александров из Горного Института сделал потрясающий доклад на заседании Академии Наук СССР. Он сообщил, что если взять шарик из закаленной стали и сбросить его с высоты 10 метров на массивную плиту из такой же закаленной стали, то шарик после удара отскочит на высоту 13-14 метров. И не только сообщил об этом результате, но и демонстрировал его в своей лаборатории всем желающим. Объяснить такой результат никто не мог, т. к. он противоречил (и до сих пор противоречит) традиционным представлениям. Но спорить с демонстрационной установкой тоже никто не мог. Именно по этой причине Александрову удалось зарегистрировать свое открытие в Госреестре открытий СССР под №13 «Закономерности передачи энергии при ударе» (редчайший случай, когда ученому удается добиться официальной регистрации явления, которое противоречит академическим взглядам).
Не смотря на официальную регистрацию, явление постарались «забыть» из-за нестыковки с традиционными представлениями. И «забыли» очень основательно, почти на полвека. Сегодня этот результат иногда пытаются объяснить разрывом связей между атомами металла при ударе шарика об основание и переходом энергии закалки в кинетическую энергию отскакивающего шарика. Но если такое происходит, тогда после многочисленных повторных падений и отскоков шарика от плиты металл и плиты и шарика должен разрушаться. А этого не происходило. Металл понемногу деформировался, но не разрушался.
Этот феномен можно использовать для извлечения энергии из физического вакуума. К сожалению, не могу привести схему, так как система почему-то не пропускает чертеж. Поэтому приходится описывать словами. На ровное основание кладется массивная железная плита (не обязательно из закаленной стали, можно из обычной углеродистой), по всей поверхности которой установлены вертикально трубы высотой в несколько метров, имеющие многочисленные «окна» на боковой поверхности для свободного движения воздуха внутрь и наружу. На нижнюю часть труб намотаны индукционные катушки для генерирования электрического тока. В плите основания строго по центру каждой трубы находятся гнезда, куда вставляют конические вставки из закаленной стали, играющие роль своеобразных пружин для падающего шарика. Когда шарик постоянно скачет в трубе вверх-вниз, он генерирует напряжение в индукционной катушке и создает электрический ток.
На первый взгляд, такая конструкция должна извлекать энергию из гравитационного поля Земли, а не из физического вакуума, потому что шарик падает под действием сил гравитации. Но в реальности энергия извлекается все же из вакуума. Когда шарик падает вниз ускоренно под действием гравитационного поля планеты, на этом отрезке его траектории поле совершает работу над вакуумом и отдает в него часть своей энергии (как при замахе руки с молотком в ходе забивания гвоздей). При столкновении с плитой шарик резко тормозится и в этот момент уже вакуум совершает работу над ним, отдавая ему полученную ранее энергию с некоторым избытком, которая расходуется на упругую деформацию внутренней кристаллической структуры шарика и основания (как при торможении молотка на шляпке гвоздя).
Вследствие того, что кристаллическая структура шарика и основания построена из положительно заряженных ионов и пронизана внутренним электрическим полем, деформация структуры при соударении ведет к деформации электрического поля. Поле сжимается подобно пружине, а энергию на сжатие дает вакуум в ходе резкой остановки шарика. Так как вакуум отдает энергии больше, чем получил ее чуть раньше от гравитационного поля, это ведет к большой степени деформации внутреннего электрического поля кристаллической структуры. Накопленные внутренние усилия бросают шарик вверх на большую высоту, с которой он начал падать. Если высвобождаемую энергию из процесса не отводить, высота падения/отскока увеличится настолько, что шарик и плита начнут при соударении разрушаться. Для отвода энергии служат индукционные катушки: пролетая сквозь катушку, шарик наводит в ней напряжение, которое можно снять и с выгодой использовать.
Возможно, в такой конструкции возникнут потери, связанные с механическим прогибом основания. Из классической механики следует, что чем больше масса мишени при абсолютно упругом соударении с ней шарика, тем меньше энергии отдает шарик мишени. Когда масса мишени стремится к бесконечности, тогда шарик отскакивает от нее с той же скоростью, с которой на нее налетел, а кинетическая энергия обратного движения равна кинетической энергии движения прямого. Иными словами, при бесконечно огромной массе мишени налетающий шарик сохраняет всю свою энергию, не отдавая мишени ничего.
В нашей конструкции масса мишени будет бесконечно огромной, если обеспечить 100%-ное сцепление плиты основания с Землей. Сделать это чисто механическим путем невозможно, потому что невозможно выполнить основание и плиту абсолютно гладкими. Всегда будут иметь место некоторые отклонения от идеально ровной поверхности. Следовательно, плита будет касаться основания не всей своей поверхностью, а лишь несколькими точками. И в момент контакта шарика с плитой она будет прогибаться под действием удара. На эти механические деформации будет уходить значительная энергия, которая будет потом выделяться в самой плите в форме бесполезного тепла. Чтобы исключить механические деформации, предлагается основание, нижнюю поверхность плиты и вставки из закаленной стали смазать тонким слоем глицерина. Глицерин, будучи жидкостью, заполняет все щели между элементами конструкции и за счет своей высокой вязкости обеспечивает надежное сцепление вставок с плитой, а плиты с основанием. В то же время он не станет мешать демонтажу и разборке конструкции, если в этом возникнет нужда.
Для достижения максимальной эффективности станции и минимальных затрат на ее строительство падающий шарик должен обладать таким набором свойств, которые трудно совместить в чисто шарообразном изделии. Во-первых, шарик должен быть изготовлен из закаленной стали, чтобы обеспечить максимально упругое соударение с основанием. Во-вторых, шарик нужно изготовить из такого магнитного материала, который наводил бы максимальную эдс в индукционной катушке. В-третьих, материал шарика должен быть максимально тяжелым, чтобы при той же самой высвобождаемой энергии до предела снизить высоту падения. Поэтому предлагается заменить собственно шарик на цилиндрическую конструкцию, составленную из разных металлов: внутреннее ядро из вольфрама обеспечивает максимальную тяжесть, наружная оболочка из магнитного материала наводит максимальную эдс в индукционной катушке, нижняя полусфера из закаленной стали способствует максимально упругому соударению с основанием.
Рассчитать величину высвобождаемой энергии в такой конструкции очень легко: это та потенциальная энергия (неверное название, но не будем сейчас придираться к мелочам), которая соответствует превышению высоты отскока над высотой падения, то есть 3-4 метра. Если шарик имеет массу 1 кг, то для 4х метров получается энергия 40 дж за один цикл. Расчеты показали, что если разместить такие конструкции на площади 100 х 100 метров с учетом проходов для обслуживающего персонала, то получится мощность 15-17 МВт. А с увеличением площади до размеров 1000 х 1000 метров мощность станции вырастает до 1500 — 1700 МВт.
Надо сказать, что современные тепловые электростанции со всеми их корпусами, градирнями и подъездными путями занимают примерно такую же площадь. Но если обычная ТЭС содержит массу сложнейшего оборудования (котлы, парогенераторы, электрогенераторы, турбины, систему трубопроводов, систему водоподготовки, охладители и т. д.), то станция на «сверхпрыгающем» шарике ничего этого не имеет. И потому она окажется в сотни раз дешевле по капитальным затратам на строительство. А отсутствие затрат на топливо и отсутствие вредных экологических выбросов сделают ее запредельно конкурентоспособной. Единственный ее недостаток — внутри помещения работающей станции невозможно будет находиться без специального шумопоглощающего шлема, иначе можно будет оглохнуть от грохота сотен тысяч падающих шариков.
К сожалению, выводить в космос легкие космические аппараты таким способом не получится. Для вывода на низкую околоземную орбиту требуется сообщить аппарату первую космическую скорость 7.9 км/сек. Значит, падать на плиту аппарат должен со скоростью пусть и не 7.9 км/сек, но достаточно большой. Значит, он сам будет разрушен.
Свидетельство о публикации №224091200924