Проект Геном человека
Это крупнейшим международным биологическим проектом.
К 2003 году было секвенировано 85 % генома человека. В 2022 году было достигнуто полное секвенирование генома человека.
Проект начался в 1990 году под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США.
Основной объём секвенирования был выполнен в двадцати университетах и исследовательских центрах США, Великобритании, Японии, Франции, Германии и Китая. Кроме фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения.
Проект также провели и на нескольких других организмах, среди которых — бактерии, в частности, Escherichia coli, насекомые, такие, как мушка дрозофила, и млекопитающие, например, мышь.
Изначально планировалось определение последовательности более трёх миллиардов нуклеотидов, содержащихся в гаплоидном человеческом геноме.
«Геном» любого человека уникален; картирование «генома человека» включало секвенирование небольшого числа людей, а затем сборку для получения полной последовательности для каждой хромосомы.
Поэтому готовый «геном человека» представляет собой мозаику, не представляющую ни одного индивидуума.
Полезность проекта заключается в том, что подавляющая часть человеческого генома одинакова у всех людей.
Геном любого отдельно взятого организма (исключая однояйцевых близнецов и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена.
Геном был разбит на небольшие участки, примерно по 150 000 пар нуклеотидов в длину. Эти куски затем встраивали в вектор, известный как Искусственная бактериальная хромосома или BAC. Эти векторы созданы из бактериальных хромосом, изменённых методами генной инженерии. Векторы, содержащие гены, затем можно вставлять в бактерии, где они копируются бактериальными механизмами репликации. Каждый из кусочков генома потом секвенировали раздельно методом дробовика, и затем все полученные последовательности собирали воедино уже в виде компьютерного текста. Размеры полученных больших кусков ДНК, собираемых для воссоздания структуры целой хромосомы, составляли около 150 000 пар нуклеотидов. Такая система известна под именем «иерархического метода дробовика», потому что вначале геном разбивается на куски разного размера, положение которых в хромосоме должно быть заранее известно.
****
Работа над интерпретацией данных генома находится всё ещё в своей начальной стадии. Ожидается, что детальное знание человеческого генома откроет новые пути к успехам в медицине и биотехнологии. Ясные практические результаты проекта появились ещё до завершения работы. Несколько компаний, например «Myriad Genetics», начали предлагать простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушения свёртываемости крови, кистозный фиброз, заболевания печени и многим другим. Также ожидается, что информация о геноме человека поможет поиску причин возникновения рака, болезни Альцгеймера и другим областям клинического значения и, вероятно, в будущем может привести к значительным успехам в их лечении.
Также ожидается множество полезных для биологов результатов. Например, исследователь, изучающий определённую форму рака может сузить свой поиск до одного гена. Посетив базу данных человеческого генома в сети, этот исследователь может проверить что другие учёные написали об этом гене включая (потенциально) трёхмерную структуру его производного белка, его функции, его эволюционную связь с другими человеческими генами или с генами в мышах или дрожжах или дрозофиле, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела в которых ген активируется, заболеваниями, связанными с этим геном или другие данные.
Более того, глубокое понимание процесса заболевания на уровне молекулярной биологии может предложить новые терапевтические процедуры. Учитывая установленную огромную роль ДНК в молекулярной биологии и её центральную роль в определении фундаментальных принципов работы клеточных процессов, вероятно, что расширение знаний в данной области будет способствовать успехам медицины в различных областях клинического значения, которые без них были бы невозможны.
Анализ сходства в последовательностях ДНК различных организмов также открывает новые пути в исследовании теории эволюции. Во многих случаях вопросы эволюции теперь можно ставить в терминах молекулярной биологии. И в самом деле, многие важнейшие вехи в истории эволюции (появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных) можно проследить на молекулярном уровне. Ожидается что этот проект прольёт свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами (приматами, а на деле и всеми млекопитающими).
Проект определения разнообразия человеческого генома[англ.] (HGDP), отдельное исследование, нацеленное на картирование участков ДНК, которые различаются между этническими группами[30]. В будущем HGDP, вероятно, сможет получить новые данные в области контроля заболеваний, развития человека и антропологии. HGDP может открыть секреты уязвимости этнических групп к отдельным заболеваниям и подсказать новые стратегии для их преодоления (см. Раса и здоровье[англ.]). Он может также показать, как человеческие популяции адаптировались к этим заболеваниям.
Особые перспективы исследования генома человека открывают методы секвенирования нового поколения. В связи с развитием новых методов значительно упростился и ускорился процесс секвенирования генома. Это позволяет проводить секвенирование большого количества геномов человека для определения однонуклеотидного полиморфизма (проект 1000 геномов). Кроме того, секвенирование нового поколения позволило начать проект по картированию элементов генома (регуляторных и других последовательностей) — ENCODE.
Удешевление методов секвенирования уже сейчас позволяет определять последовательность генома отдельного человека в терапевтических целях.
**В одном из авторитетных научных журналов Science опубликованы две научные статьи международного научного консорциума Telomere-to-telomere, в состав которого входят ученые Научно-технологического университета «Сириус» под руководством директора Научного центра генетики и наук о жизни Евгения Рогаева.
Ученые университета «Сириус» внесли свой вклад в работу по секвенированию и сборке генома образца CHM13 и анализу центромерных повторов в хромосомах.
Они отвечали за валидацию сборки центромерных областей хромосом, ранее целиком не декодированных участков в геноме человека – эти материалы вошли в статью «The complete sequence of a human genome». А для статьи «Complete genomic and epigenetic maps of human centromeres» научная группа подготовила детальные аннотации центромерных и перицентромерных регионов, а также провела всесторонний анализ повторов в геноме.
«Получая информацию о геноме, мы читаем короткие фрагменты, а затем сравниваем их с эталоном, который был расшифрован. Таким образом, мы ищем варианты, которые есть у долгожителей, и которые способны уберечь их от распространенных возрастных заболеваний. Так, возможно, в будущем ученым удастся блокировать гены, отвечающие за многие болезни», – пояснил Евгений Рогаев.
*«Нам удалось показать, что центромеры человека эволюционируют посредством "расширения слоев", то есть более новые последовательности, расширяясь из активной центромеры хромосомы, оттесняют более старые к флангам, которые со временем накапливают мутации и частично сокращаются. В результате мы можем проследить эволюцию центромерных повторов, поскольку наш геном содержит остатки центромер древних приматов», – объясняет Лев Уральский, научный сотрудник Центра генетики и наук о жизни.
*** Расшифровка генома НЕАНДЕРТАЛЬЦА
В июле 2006 года Институт эволюционной антропологии имени Макса Планка в Германии и компания 454 Life Sciences в США объявили о начале работы по секвенированию полного генома неандертальца.
В 1997 году смогли получить митохондриальную ДНК из плечевой кости типового образца Neanderthal 1 (Feldhofer 1).
Геном неандертальца по размеру близок к геному современного человека. Результаты показывают, что ДНК современного человека и неандертальца идентичны приблизительно на 99,5 %. Исследователи извлекли ископаемую ДНК неандертальца из кости бедра скелета неандертальца 38 000-летней давности из пещеры Виндия в Хорватии, а также из других костей, найденных в Испании, России и Германии. Используя последовательности митохондриальной ДНК шимпанзе и человека в качестве опорных точек, учёные рассчитали: дата расхождения между мтДНК современного человека и неандертальца составляет 660 000 ± 140 000 лет.
Для секвенирования генома неандертальца требовалось приблизительно 500 мг образцов костной ткани. Работа по проекту оказалась сопряжена со многими трудностями, включая загрязнение образцов. Было отобрано шесть образцов кости от пяти неандертальских особей, происходящих с четырёх стоянок: образцы Vindija 33.25 и Vindija 33.16 (возраст ~44 тыс. л. н.) из пещеры Виндия (Хорватия), образцы двух неандертальцев Feldhofer 1 (Neanderthal 1) и Feldhofer 2 (возраст ~40 тыс. л. н.) из грота Фельдхофер[англ.] (Германия), образец Sidron 1253 (возраст ~49 тыс. л. н.[5]) из пещеры Эль-Сидрон (Испания) и образец Mezmaiskaya 1 (возраст 60-70 тыс. л. н.) из пещеры Мезмайская (Россия).
Более 99 % генетических данных дал образец Vindija 33.16 из пещеры Виндия. Чтобы проверить, являются ли полученные последовательности нуклеотидов из этого образца типичными для неандертальца, исследователи проанализировали несколько миллионов пар нуклеотидов из других образцов неандертальцев. Наибольшее количество сравнительного генетического материала дали образец из Мезмайской пещеры (20 миллионов пар нуклеотидов), образец из пещеры Эль-Сидрон (5 миллионов пар нуклеотидов), образцы из грота Фельдхофер (два миллиона пар нуклеотидов)[6].
Сравнение митохондриальной ДНК, извлечённой в 2007 году из левой бедренной кости неандертальской девочки из пещеры Тешик-Таш, с мтДНК из костей из пещеры Окладникова и из тринадцати костей европейских неандертальцев показало сходство митохондриальной ДНК сибирских и европейских неандертальцев.
В феврале 2009 года группа генетиков под руководством Сванте Паабо объявила о завершении первого проекта по расшифровке генома неандертальца. Было прочитано 3,7 миллиарда пар нуклеотидов — больше, чем всего в геноме (3,2 миллиарда пар нуклеотидов), так как некоторые участки неандертальской ДНК были прочитаны в нескольких копиях.
Свидетельство о публикации №225013001271
С дружеским приветом
Владимир
Владимир Врубель 30.01.2025 17:34 Заявить о нарушении
Вспомни Мао Дзэдуна.
По словам врача Мао, он мечтал о долголетии. Каждое утро китайский народ просыпался с лозунгом: «Десять тысяч лет Председателю Мао!»
Он, уже старый, мечтал обрести долголетие путем любовных утех с девственницами, поэтому на его ложе часто менялись любовницы.
Врач редко говорил то, что Мао слышать не хотел, так как боялся попасть в немилость.
Помимо многочисленных любовниц, самой молодой из которых было 14 лет, у него было три законных брака и по меньшей мере шестеро детей.
Мао Дзедун умер на 83-м году жизни.
Короли и цари тоже любили специальные ванны, грудное молоко, ритуалы, магов, знахарей и всяческие снадобья.
Марианна Ольшевская 30.01.2025 21:03 Заявить о нарушении