Простейшая модель вращающейся вселенной
На рисунке приведено простейшее движение пробного тела на плоскости вокруг центра масс вселенной. В правой части уравнения (1) имеется в виду расширение вселенной вследствие вращения из-за возникающей при этом центробежной силы, превышающей силу тяготения. Простейшее решение (4.2) этого нелинейного дифференциального уравнения приводит к занижению эффективной массы по сравнению со случаем тяготения в отсутствии вращения. Вообще, определение массы элементарной частицы в простейшем случае может быть дано в виде формулы (6). Правда, угловая скорость тут является внутренней, укладывающей, компанующей на квантовом уровне. Некоторые соображения показывают зависимость этой скорости от квантов радиуса в степени 32, а масс элементарных частиц – в виде рядов чисел Фибоначчи по отношению к кванту массы.
Главный вывод заключается в том, что самого важного в физике, в устройстве вселенной мы пока не знаем. Уравнение Ньютона-Кеплера с дополнительными членами вполне может помочь в простейшем моделировании вселенских процессов. Кстати, наблюдательная астрономия по-прежнему связана с птолемеевой вращающейся системой, в центре которой планета Земля.
THE SIMPLEST MODEL OF A ROTATING UNIVERSE
It makes sense to start with an experiment. The rotation of a ball or cylinder presses the bodies inside it to the wall. If this rotation is there with a different attraction or the absence of gravitational forces the effect will be the same. In problems of mechanics, we are often accustomed to equating centripetal and centrifugal forces with the force of gravity. But, as experiments show, contrary to common assertions, these forces can have an independent character, due exclusively to rotation. Rotating systems are not inertial. In his "Mathematical Principles of Natural Philosophy" Newton gives an example of effects in the hold of a ship. In rotating systems, not only centripetal and centrifugal forces arise but also Coriolis forces. In the presence of "holes" with a lower pressure compared to the pressure in the environment, the effect of a "suction" force is observed; from holes with a higher pressure, the effects of fountaining and "unwinding" are observed. In a rotating medium, particles experience a centrifugal effect. Of course, the equations of motion in a rotating system are nonlinear and have very complex solutions compared to the equations in an inertial system. Modern physics, resorting to linearization procedures, deals mainly with linear equations and transformations. In this case, the potential of the nonlinear Newton-Kepler’s equation is used only for problems with gravitational forces. We will show that in fact these equations can quite well describe the effects of the expansion of the universe, the "dark" mass. The effects of rotation of "black holes" can also be described by solutions of the corresponding similar equation.
The figure shows the simplest motion of a test body on a plane around the mass center of the universe. The right side of equation (1) refers to the expansion of the universe due to rotation, due to the resulting centrifugal force which exceeds the force of gravity. The simplest solution (4.2) of this nonlinear differential equation leads to an underestimation of the effective mass compared to the case of gravity in the absence of rotation. In general, the definition of the mass of an elementary particle in the simplest case can be given in the form of formula (6). True, the angular velocity here is internal, laying down, composing at the quantum level. Some considerations show the dependence of this velocity on the quanta of the radius to the power of 32, and the masses of elementary particles - in the form of Fibonacci series with respect to the quantum of mass. The main conclusion is that we do not yet know the most important thing in physics, in the structure of the universe. The Newton-Kepler’s equation with additional terms may well help in the simplest modeling of universal processes. By the way, observational astronomy is still associated with the Ptolemaic rotating system, in the center of which is the planet Earth.
Свидетельство о публикации №225022500758