Парагогенгейм. 4-шестиарность Парагогенгейма

соседи 58"
соседи 66 (66 остаётся базой)"
соседи 70"
соседи 78"
path-to-6,58,minimal negative steps using -8 and final -4,7,"58 -> 50 -> 42 -> 34 -> 26 -> 18 -> 10 -> 6","26;6",-,"50;10","Минимальная длина 7 шагов: 6;(-8) + (-4)"
path-to-6,66,via 58 chain,8,"66 -> 58 -> 50 -> 42 -> 34 -> 26 -> 18 -> 10 -> 6","66;26;6",-,"50;10","66 -> (как для 58): 8 шагов"
path-to-6,70,8,"70 -> 62 -> 54 -> 46 -> 38 -> 30 -> 22 -> 14 -> шагов (все -8)"
path-to-6,78,9,"78 -> 70 -> 62 -> 54 -> 46 -> 38 -> 30 -> 22 -> 14 -> 6","78;70;62;46;6",-,"70;30","9 шагов (78->70 затем цепочка 70)")
path-to-666,66,arithmetic progression,75,"a_n = 66 + 8n,\ n=0..75 (последний шаг: n=75 gives 66+8*75=666)","много (содерж. 6 в некоторых членах)",-,"90;130;...","Минимальное число шагов 75 (все +8)"
path-to-666,58,arithmetic progression,76,"a_n = 58 + 8n,\ n=0..76 (66+8*76=666)","много (много членов содержат 6)",-,"70;110;...","Минимум 76 шагов (все +8)"
path-to-666,70,mixed (+8 main + final +4),75,"70 + 8*74 + 4 = 666 (74 шагa +8, 1 шаг 75 шагов: 74;(+8) и +4"
path-to-666,78,mixed (+8 main + final +4),74,"78 + 8*73 + 4 = 666 (73 шагa +8, 1 шаг 74 шага"
notes,rule,description,-,"Единое правило: итеративный клотур (closure) над множеством начальных чисел S_0={58,66,70,78} с операциями +2,+4,+6,+8 и ;2,;4,;6,;8; генерируем слои (шаги) пока не достигнем целевых чисел из '6...' (6,66,666...). Приоритет A/B/C: приоритизируем фильтрацию по наличию цифры '6' (B), затем гарантируем включение базовых 4 чисел (A), шаблонные смещения (C) применим как метки местоположения ключевых чисел.",-,-,,-,"Правило согласовано с предыдущими сообщениями"
method,how_to_check_primality_and_5,-,-,"Примечание: простые числа в коротких слоях отсутствовали; для длинных прогрессий простые члены проверяются по стандартным алгоритмам (Miller;Rabin или дет. делители для малых чисел). Члены, кратные 5, встречаются регулярно по модулю 5 (шаг 8;3 mod5 -> период 5).",-,-,-,,-,


Рецензии