История тэлии. Гармония сфер как изучение циклов
Сегодня 18 января 2026 г., воскресенье. Восходящие аметистовые (Вторые) сутки. AsAS-сутки/Today is Sunday, January 18, 2026. The Ascending Amethyst (Second) day. AsAS-day
Эпиграф: «Все, чему вас учили в школе, забудьте» (Негласное правило для студентов Химического факультета Московского государственного университета, 1984)
ИСТОРИЯ ТЭЛИИ. «ГАРМОНИЯ СФЕР» КАК НАЧАЛЬНОЕ ИЗУЧЕНИЕ ЦИКЛИЧЕСКИХ ПРОЦЕССОВ В ЗВУКЕ И УСТРОЙСТВЕ КОСМОСА
Гармония сфер (гармония мира, мировая музыка) - античное и средневековое учение о музыкально-математическом устройстве космоса, продолжающее пифагорейскую и платоническую философские традиции. Суть гармонии сфер по Аристотелю в том, что движение небесных светил рождает гармонию, поскольку возникающие при этом движении звучания благозвучны, а скорости светил, рассчитанные в зависимости от расстояний между ними, выражаются числовыми отношениями благозвучий (консонансов). Платон говорит о «циклах», Аристотель о «небесных светилах», или «звездах». Позже понятие о гармонии сфер описывается как «небесная гармония», «небесная музыка», «мировая гармония».
Первым учение о гармонии сфер изложил Платон в десятой книге диалога «Государство» (616b-617d) в форме мифа о загробных путешествиях Эра. Это учение об октаве из 8 ступеней (звездное небо, Сатурн, Юпитер, Марс, Меркурий, Венера, Солнце, Луна) носило более философско-литературный, нежели математический характер. Здесь не было числовых отношений между ступенями октавы. Ступени рассматривались вложенными одна в другую, их края сверху имеют вид кругов на общей оси, так что снаружи они образуют как бы «непрерывную поверхность единого вала», а ось проходила через центр восьмого круга. Первый, наружный вал имел наибольшую поверхность круга, восьмой – наименьшую. Вращаясь (двигаясь циклично) в целом, все веретено совершало один оборот, а при этом вращении движении внутренние семь кругов медленно поворачивались в противоположном направлении. Быстрее двигался восьмой круг, затем седьмой, шестой и пятый, которые двигались с одинаковой скоростью, затем четвертый, третий, второй. Сверху на каждом из кругов «веретена» восседала сирена, вращаясь вместе с ним и издавая звук всегда одной, определенной высоты. Из восьми звуков было составлено согласие (лад) единой гармонии. Около сирен на равном от них расстоянии каждая на своем престоле, во всем белом, с венками на головах сидели мойры, которые пели, накладываясь на гармонию сирен.
В римской литературе пифагорейское учение о гармонии мира изложили Цицерон, Цензорин, Халкидий, Макробий, Боэций. В их интерпретации космическая музыка проецировалась и на человеческую деятельность. Воспроизводя небесную музыку на струнах земных инструментов и посредством пения, ученые люди открывали себе путь для возвращения на Небо. Они это делали подобно другим людям, которые, благодаря дарованию в земной жизни посвятили себя вдохновению, науке и знаниям, струящимся с Небес. Придав небесной гамме вид диатонической гиподорийской октавы, Боэций связал «мировую музыку» с «музыкой инструментальной» (струнами кифары), в основу которой была положена система октавных ладов (музыкальных циклов).
Идеи о гармонии мира были развиты в западноевропейской философской и музыкально-теоретической науке в Средние века и в эпоху Возрождения в работах И.С. Эриугены, М. Мерсенна, Р. Фладда, А. Кирхера. На средневековом Востоке концепция гармонии мира была изложена в «Послании о музыке» Братьев чистоты.
В Новое время концепция «музыки сфер» была развита И. Кеплером в трактате «Гармония мира». Каждой планете соответствовала своя мелодия. Отношению чисел, лежащему в основе музыкального интервала, соответствовало отношение максимальной и минимальной угловой скорости планеты (такое соотношение рассматривалось и для двух разных планет). «Музыка сфер» и связанные с ней числовые отношения позволили И. Кеплеру сформулировать третий закон движения небесных тел.
Помимо ученых гармонию мира искали и воспели писатели, поэты, композиторы: У. Шекспир («Венецианский купец» V.1), И. Гете (пролог к «Фаусту»), А. Блок («Ищу спасенья»), Н. Римский-Корсаков («Музыка сфер» для неосуществленной оперы «Земля и Небо»), П. Хиндемит (опера и симфония под названием «Гармония мира»). В 2006 г. минималист Г. Фокс написал «Песню сфер», используя астрономические данные орбит девяти планет Солнечной системы. В 2008 г. М. Олдфилд выпустил альбом «Музыка сфер».
Древние ученые пифагорейцы стремились выразить через игру на лире музыку (гармонию) сфер – высшее «звучание» планет, солнца, луны и их сфер, составляющее музыкально-математическое строение космоса, очищающее и врачующее душу. Через музыку они стремились постичь соразмерность гармонии души и космоса. «Образ гармонии сфер» долго доминировал в астрономии (И. Кеплер), в эстетике, искусстве Европы средневековья и Нового времени.
Из нескольких тысяч звуковых частот колебаний, доступных уху человека, в музыке используют меньше ста, например, у рояля восемьдесят восемь клавиш. Эти звуки сведены в высотную систему, называемую звукорядом. Естественно воспринимаются частоты, находящиеся между собой в простых числовых соотношениях: 1 к 2, 4 к 5 к 6.
Согласно современной темперации, одному музыкальному тону соответствует частотное соотношение 9 к 8, в котором находятся в октаве звуки ре и до, соль и фа, си и ля. Внутри октавы наряду с основным тоном четко воспринимается квинта, находящаяся с ним в соотношении 3 к 2. Современный звукоряд в пределах октавы, называемый гаммой, может быть семизвуковым (диатоническим), двенадцатизвуковой (хроматическим), пятизвуковым (пентатоническим).
Названия лада как упорядоченной последовательности звуков на различных языках звучат как «согласие», «порядок», «стройность», «мир». Аналогии с музыкальным рядом в различные эпохи в различных цивилизациях использовались как модель мироустройства. Например, в средневековой Англии искусство колокольного звона служило моделью космического хода времени. Переборы колокольного звона создавали у слушателей впечатление непрекращающихся перемен, заставляя искать в изменчивости переборов определенную мелодию, которой нет, несмотря на то, что бой колоколов подчинялся неизменному математическому правилу. Дж. Т. Фрейзер в работе «О времени, страсти и знании» написал: «Обобщая музыкальную космологию звонов, модель времени и музыки, можно перейти сначала к циклическому ходу жизни и ее возрастам, затем к истории человечества, а потом и Вселенной. Сам космос можно мыслить как перебор бесчисленных осцилляторов (циклических систем – прим. сост.), подчиненный принципам организации, которые в нем проявляются».
Древнекитайская космогоническая модель описывала мир по аналогии с гармоническим музыкальным рядом, в котором основной тон («тон желтого колокола») аналогичен «пути просветления». В работе «Весны и осени господина Люя» (III в. до н.э.) говорится: «Во времена великой мудрости и высочайшей разумности гармонический эфир Неба и земли воссоединяется и дает жизнь звучащему ветру. Солнце в своем движении по небосводу достигает точки летнего солнцестояния и образует определенную конфигурацию с луной, которая, звеня подобно колокольчику под ударом ветра, производит двенадцать музыкальных тонов, соответствующих двенадцати месяцам-лунам». По мнению китайцев, подобно «пути просветления», упорядочивающему мир, «тон желтого колокола» упорядочивает общество, сходный с идеальным музыкальным ладом, действуя в качестве «резонатора» космической гармонии.
Многие из рассмотренных выше идей древних мыслителей легли в основу трактата И. Кеплера «Гармония мира» (1619 г.), в котором ученый рассматривал соответствия геометрических форм, физических явлений, в том числе музыки, устройству мироздания, увязывая математическое учение о гармонии с законами движения планет.
Уже в трактате «Тайна мироздания» (1596 г.) И. Кеплер описал гелиоцентрическую систему мира, включая известные к тому времени орбиты планет Солнечной системы, с помощью системы правильных многогранников. В схеме Кеплера каждый правильный многогранник имел вписанную (внутреннюю) сферу, касающуюся центров каждой грани, и описанную (внешнюю) сферу, проходящую через все вершины, причем центр у этих сфер общий, и в нем находилось Солнце. Орбиты планет в этой модели Кеплера точно не вписывались в многогранники, но расхождения между теорией и эмпирическими данными Кеплер объяснял тем, что реальные планетные сферы имеют «толщину». В то же время он не оставил попыток построения более точной модели, что и привело его в конечном счете к открытию законов движения планет.
Наряду с поисками геометрически совершенной модели мироздания Кеплер искал также связь между соотношениями планетарных орбит и учением о музыкальной гармонии. Как говорилось выше, представления о соответствии музыкальных интервалов и орбит планет были развиты в античной и средневековой философии. Понятие же о гармонии сфер (музыки сфер) было традиционной философской метафорой, изучаемой в европейских университетах в составе четырех основных наук. Кеплер отказался от использования Пифагорова строя, связав отношения в музыкальных интервалах с угловыми скоростями планет Солнечной системы, и заявил, что «Бог действует как великий геометр, но не нумеролог».
Примечания:
1) О предмете тэлии
http://proza.ru/2025/11/02/1198
2) Список работ по тэлии («Каталог Higher-Harmony-Telia-Ultrasciences (HHTU)):
http://proza.ru/2025/01/27/430
Epigraph: «Forget everything you were taught in school» (An unspoken rule for students of the Chemistry Faculty of Moscow State University, 1984)
THE STORY OF TELIA. «HARMONY OF THE SPHERES» AS AN INITIAL STUDY OF CYCLIC PROCESSES IN SOUND AND THE STRUCTURE OF THE COSMOS
Harmony of the spheres (harmony of the world, world music) is an ancient and medieval teaching about the musical and mathematical structure of the cosmos, continuing the Pythagorean and Platonic philosophical traditions. According to Aristotle, the essence of the harmony of the spheres is that the movement of the heavenly bodies creates harmony, since the sounds arising from this movement are harmonious, and the speeds of the bodies, calculated depending on the distances between them, are expressed in numerical ratios of euphonies (consonances). Plato speaks of «cycles», Aristotle of «heavenly bodies», or «stars». Later, the concept of the harmony of the spheres is described as «heavenly harmony», «heavenly music», «world harmony».
Plato was the first to expound the doctrine of the harmony of the spheres in the tenth book of the dialogue «The State» (616b-617d) in the form of a myth about the afterlife journeys of Er. This doctrine of the octave of 8 steps (starry sky, Saturn, Jupiter, Mars, Mercury, Venus, Sun, Moon) was more philosophical and literary than mathematical in nature. There was no numerical relationship between the octave steps. The steps were considered nested inside each other, their edges from above look like circles on a common axis, so that from the outside they form a kind of «continuous surface of a single shaft», and the axis passed through the center of the eighth circle. The first, outer shaft had the largest circle surface, the eighth had the smallest. Rotating (moving cyclically) as a whole, the entire spindle made one revolution, and during this rotation, the inner seven circles slowly turned in the opposite direction. The eighth circle moved faster, then the seventh, sixth, and fifth, which moved at the same speed, then the fourth, third, and second. On top of each of the circles of the «spindle» sat a siren, rotating with it and always making a sound of a certain height. The accord (fret) of a single harmony was made up of eight sounds. Near the sirens, at an equal distance from them, each on her throne, dressed all in white, with wreaths on their heads, sat moira, who sang, superimposing on the harmony of the sirens.
In Roman literature, the Pythagorean doctrine of the harmony of the world was expounded by Cicero, Censorinus, Chalcidius, Macrobius, and Boethius. In their interpretation, cosmic music was projected onto human activity. By playing heavenly music on the strings of earthly instruments and by singing, learned people opened the way for themselves to return to Heaven. They did this like other people who, thanks to their talents in earthly life, devoted themselves to inspiration, science and knowledge flowing from Heaven. Having given the celestial scale the appearance of a diatonic Hypodorian octave, Boethius connected «world music» with «instrumental music» (strings of the kithara), which was based on a system of octave frets (musical cycles).
Ideas about the harmony of the world were developed in Western European philosophical and musical theoretical science in the Middle Ages and in the Renaissance in the works of I.S. Eriugena, M. Mersenne, R. Fludd, A. Kircher. In the medieval East, the concept of harmony of the world was outlined in the «Message on Music» of the Brothers of Purity.
In Modern times, the concept of «music of the spheres» was developed by J. Kepler in his treatise «Harmony of the World». Each planet had its own melody. The ratio of numbers underlying the musical interval corresponded to the ratio of the maximum and minimum angular velocity of the planet (this ratio was also considered for two different planets). The «Music of the spheres» and the numerical relations associated with it allowed J. Kepler to formulate the third law of motion of celestial bodies.
In addition to scientists, the harmony of the world was sought and sung by writers, poets, and composers: W. Shakespeare («The Merchant of Venice», V.1), J. Goethe (the prologue to «Faust»), A. Blok («Seeking Salvation»), N. Rimsky-Korsakov («Music of the Spheres» for the unrealized opera «Earth and Sky»), P. Hindemith (opera and symphony entitled «Harmony of the World»). In 2006, minimalist G. Fox wrote the «Song of the Spheres» using astronomical data from the orbits of nine planets in the Solar System. In 2008, M. Oldfield released the album «Music of the Spheres».
The ancient Pythagorean scientists sought to express through playing the lyre the music (harmony) of the spheres – the highest «sound» of the planets, the sun, the moon and their spheres, which makes up the musical and mathematical structure of the cosmos, purifying and healing the soul. Through music, they sought to comprehend the proportionality of the harmony of the soul and the cosmos. The «image of the harmony of the spheres» has long dominated astronomy (J. Kepler), in aesthetics, art of Europe in the Middle Ages and Modern times.
Of the several thousand sound frequencies of vibration available to the human ear, less than a hundred are used in music, for example, the piano has eighty-eight keys. These sounds are combined into a high-pitched system called a scale. Frequencies that are related to each other in simple numerical ratios are naturally perceived: 1 to 2, 4 to 5 to 6.
According to modern temperament, one musical tone corresponds to a frequency ratio of 9 to 8, in which the sounds of re and do, sol and fa, si and la are in an octave. Within an octave, along with the main tone, a fifth is clearly perceived, which is in a ratio of 3 to 2 with it. A modern scale within an octave, called a scale, can be seven-tone (diatonic), twelve-tone (chromatic), five-tone (pentatonic).
The names of frets as an ordered sequence of sounds in various languages sound like «harmony», «order», «harmony», «peace». Analogies with the musical series in different epochs in different civilizations were used as a model of the world order. For example, in medieval England, the art of bell ringing served as a model for the cosmic passage of time. The repetitions of the bells gave the listeners the impression of incessant change, forcing them to look for a certain melody in the variability of the repetitions, which did not exist, despite the fact that the bells obeyed an invariable mathematical rule. J. T. Fraser in his work «On Time, Passion and Knowledge» wrote: «Summarizing the musical cosmology of bells, the model of time and music, we can first move on to the cyclical course of life and its ages, then to the history of mankind, and then to the Universe. The cosmos itself can be thought of as an enumeration of countless oscillators (cyclic systems – approx. comp.), subordinated to the principles of the organization, which are manifested in it».
The ancient Chinese cosmogonic model described the world by analogy with a harmonic musical series in which the basic tone (the «tone of the yellow bell») is similar to the «path of enlightenment». The work «The Spring and Autumn of Mr. Liu» (III century BC) says: «In times of great wisdom and supreme intelligence, the harmonious ether of Heaven and earth reunites and gives life to the sounding wind. The sun, in its movement across the firmament, reaches the summer solstice point and forms a certain configuration with the moon, which, ringing like a bell under the blow of the wind, produces twelve musical tones corresponding to the twelve moons». According to the Chinese, like the «path of enlightenment», which regulates the world, the «tone of the yellow bell» regulates society, similar to the ideal musical scale, acting as a «resonator» of cosmic harmony.
Many of the ideas of the ancient thinkers discussed above formed the basis of J. Kepler's treatise «The Harmony of the World» (1619), in which the scientist considered the correspondence of geometric shapes, physical phenomena, including music, to the structure of the universe, linking the mathematical doctrine of harmony with the laws of planetary motion.
Already in the treatise «The Mystery of the Universe» (1596), J. Kepler described the heliocentric system of the world, including the orbits of the planets of the Solar System known by that time, using a system of regular polyhedra. In Kepler's scheme, each regular polyhedron had an inscribed (inner) sphere touching the centers of each face, and a circumscribed (outer) sphere passing through all the vertices, and the center of these spheres was common, and the Sun was in it. The orbits of the planets in this Kepler model did not exactly fit into polyhedra, but Kepler explained the discrepancies between theory and empirical data by the fact that real planetary spheres have a «thickness». At the same time, he did not give up trying to build a more accurate model, which eventually led him to discover the laws of planetary motion.
Along with the search for a geometrically perfect model of the universe, Kepler was also looking for a connection between the ratios of planetary orbits and the doctrine of musical harmony. As mentioned above, ideas about the correspondence of musical intervals and orbits of planets were developed in ancient and medieval philosophy. The concept of harmony of the spheres (music of the spheres) was a traditional philosophical metaphor studied in European universities as part of the four main sciences. Kepler rejected the use of the Pythagorean system, linking the relations in musical intervals with the angular velocities of the planets of the Solar system, and stated that «God acts as a great geometer, but not a numerologist».
Notes:
1) About telia's subject:
http://proza.ru/2025/11/02/1198
2) List of works on telia («Higher-Harmony-Telia-Ultrasciences (HHTU) Catalog»):
http://proza.ru/2025/01/27/430
Свидетельство о публикации №226011801177