В энергию водородной связи существенный вклад внос

Сибирская Хиджра: литературный дневник

В поисках ответа на вопрос о природе водородной связи специалисты по квантовой химии применили к этому типу межмолекулярных взаимодействий теорию валентных связей. Для наиболее изученных типов водородных связей (F–H;FH, F–H;OH2, F–H;NH3, HO–H;OH2, HO–H;NH3 и H2N–H;NH3) они определили вклад различных факторов в общую энергию водородной связи и установили, что в ряде изученных систем ковалентное взаимодействие может составлять более половины энергии водородной связи.


Говоря о связях в химических веществах и химических процессах, мы выделяем два типа связей — химические (внутримолекулярные) и межмолекулярные. Химические связи — это достаточно прочные взаимодействия атомов или продуктов их превращений друг с другом, благодаря которым образуются молекулы или другие формы существования веществ. Существует всего три типа химических связей:


    1) ковалентная связь образуется за счет того, что два или более атомов связываются общим электронным облаком;
    2) ионная связь — атомы или их группы, приобретая или отдавая электроны, превращаются, соответственно, в отрицательно или положительно заряженные ионы, которые связываются друг с другом за счет электростатических взаимодействий;
    3) металлическая связь существует только в металлах и сплавах, где всем атомам кристаллической решетки металла одновременно принадлежит общее электронное облако.


Межмолекулярные связи (иногда их называют «нехимическими связями») — менее прочные по энергии взаимодействия, они притягивают друг к другу молекулы, находящиеся в жидкой или твердой фазах, и не приводят к образованию ковалентных (химических) связей. Несмотря на различие в энергии, и химические, и межмолекулярные связи могут формироваться либо за счет объединения электронной плотности, либо за счет электростатических взаимодействий, либо (и это происходит чаще всего) за счет их суперпозиции.


Водородная связь — это межмолекулярное взаимодействие, которое возникает между атомом водорода, ковалентно связанным с атомом электроотрицательного химического элемента, и атомом другого электроотрицательного элемента. Атом водорода, будучи связанным с одним электроотрицательным атомом, испытывает недостаток электронной плотности и притягивается ко второму электроотрицательному атому, богатому электронами. Обычно водородную связь обозначают следующим образом: D–H;A. Связанный с водородом ковалентной химической связью атом «D» называют донором водородной связи, а атом «A» — акцептором водородной связи.


Термин «водородная связь» впервые появляется в 1920 году в работе Венделла Латимера и Уорта Родебуша. В 1930-е годы концепция водородной связи была успешно использована для объяснения значений аномально высоких температур кипения и диэлектрической проницаемости органических веществ, содержащих фрагменты –ОН и –NH, а также необычных свойств воды в жидком и твердом агрегатном состояни. Благодаря образующимся между молекулами воды водородным связям вода (Н2О) отличается самой высокой температурой кипения среди водородных соединений элементов 16-й группы, в которую входит кислород (а также сера, селен, теллур, полоний и ливерморий). При этом в ряду H2S—H2Se—H2Te температура кипения увеличивается параллельно увеличению молекулярной массы. Водородные связи также ответственны за то, что при замерзании плотность воды понижается и лед плавает на поверхности воды, не давая водоемам промерзнуть до дна.
Именно эта особенность воды (и, следовательно, образующихся в ней водородных связей) не раз позволяла жизни сохраняться во время ледниковых периодов и даже глобальных обледенений Земли.


За почти сто лет существования концепции водородной связи этот вид межмолекулярного взаимодействия изучали и с помощью теоретических, и с помощью экспериментальных методов — инфракрасной и ЯМР-спектроскопии, рентгеновской и нейтронной дифракции. В настоящее время без привлечения концепции водородных связей нельзя объяснить ни особенности тонкой структуры белков и нуклеиновых кислот, ни механизм протекания катализируемых ферментами процессов, протекающих в организме. Образование и разрушение водородных связей может объяснить даже то, почему во время стирки изделия из льняных и хлопковых тканей мнутся, и какие физические процессы протекают во время глажения тканей.
Несмотря на большое количество исследований, посвященных влиянию водородных связей на физические и химические свойства веществ, природа этого межмолекулярного взаимодействия до сих пор не ясна. C одной стороны, это не мешает химикам применять концепцию водородной связи для объяснения многочисленных химических и физических явлений, с другой — химики стремятся установить механизм образования водородно-связанных комплексов.
В свое время Лайнус Полинг, непререкаемый тогда авторитет в области природы химических связей, предполагал, что водородная связь представляет собой исключительно электростатическое взаимодействие: несущий частичный положительный заряд атом водорода, от которого более электроотрицательный донор водородной связи (кислород, фтор или азот) оттягивает электронную плотность, притягивается к заряженному отрицательно акцептору водородной связи. Он исключал, что атом водорода может образовать ковалентную связь сразу с двумя атомами. Тем не менее открытие многоцентровых многоэлектронных ковалентных химических связей позволило уже современникам Полинга заметить, что перенос заряда между атомами, который наблюдается в водородно-связанном комплексе D–H;A, можно объяснить только тем, что в водородной связи имеется ковалентная составляющая, вклад которой в общую энергию связи, однако, в те времена не удавалось оценить.
Сейчас, спустя шесть десятков лет после начала дискуссий о том, что же главное в водородной связи — электростатика или ковалентные взаимодействия, — единства удалось достичь только в том, что для образования водородной связи важны и электростатические, и ковалентные взаимодействия. Вопрос же о том, какое из них вносит больший вклад в притяжение водорода к акцептору водородной связи, до сих пор остается открытым. Интерес к водородной связи не праздный — учитывая ее значение для химии и молекулярной биологии; полное понимание ее природы — не просто голое теоретизирование, но и перспектива более эффективного управления процессами, в которых происходит образование или разрыв водородных связей.


Исследователи из Колледжа маристов (Поукипси, штат Нью-Йорк, США) под руководством Джона Моррисона Гэлбрайта впервые решили применить к изучению водородной связи теорию валентных связей. Эта теория — приближенный квантовохимический метод, основным допущением которого является то, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар. Выбор такого приближения был продиктован тем, что теория валентных связей — достаточно гибкий инструмент для анализа химических взаимодействий, который, благодаря простоте возможных моделей связывания, легко может быть адаптирован и для анализа водородных связей.
Авторы использовали метод валентных связей для изучения следующих водородно-связанных ассоциатов: F–H;FH, F–H;OH2, F–H;NH3, HO–H;OH2, HO–H;NH3 и H2N–H;NH3. Конечно, существует большое количество водородных связей и другого типа, однако выбор моделей для исследования был продиктован тем, что именно они лучше всего соответствуют простейшему определению водородной связи, упоминаемому еще в школьном учебнике: «притяжение между связанным с N, O или F атомом водорода и другим электроотрицательным атомом».


Для анализа модельных водородных связей исследователи раскладывали общую энергию каждой из них на «элементарные» составляющие. С помощью метода функционала плотности были поэтапно рассчитаны следующие составляющие энергии водородной связи: изменение геометрического состояния участников водородного связывания, вклад кулоновского взаимодействия (электростатическая составляющая), вклад поляризации химических связей и вклад переноса заряда (ковалентная составляющая).
Такое разложение традиционно используют при анализе химических и отличающихся большой энергией межмолекулярных взаимодействий. И попытки проделать это с водородной связью уже предпринимались ранее, но применялись квантовохимические модели, дающие менее точные предсказания.


Расчеты показали, что из шести возможных вариантов представления водородной связи наиболее выгодными с точки зрения энергетической стабилизации являются структуры, в которых ковалентность водородной связи максимальна — на рис. 2 они обозначены номерами IV и V. Для структуры IV ковалентная связь образуется за счет взаимодействия водорода с неподеленной парой электронов акцептора водородной связи; граничная структура V образуется за счет того, что пара электронов ковалентной связи H–D и неподеленная электронная пара акцептора водородной связи образуют единое четырехэлектронное облако, которое связывает одновременно все четыре ядра системы D–H;A. Такую химическую связь называют четырехэлектронной трехцентровой.
Также было определено, что в водородно-связанном комплексе F–H;NH3, для которого наблюдается наиболее прочная водородная связь с энергией 57,3 кДж/моль (эта величина сравнима с прочностью «обычных», внутримолекулярных связей), вклад ковалентной связи в общую энергию водородной связи составляет 82,6%. В целом же для изученных систем перенос заряда (ковалентная составляющая) составляет от 32,6% до 82,6% от общей энергии водородной связи.
Полученные результаты противоречат результатам проведенного в прошлом году теоретического исследования водородной связи (тем же методом), в котором делался вывод о том, что водородная связь преимущественно определяется электростатическими взаимодействиями. Сторонники двух точек зрения на водородную связь — «ковалентной» и «электростатической» — уверены в своей правоте, критикуя работы оппонентов примерно одинаковыми аргументами: ошибками в подборе математических функций для квантовохимического анализа и неточностями в разбиении вкладов различных факторов на общую энергию водородной связи.
Тем не менее, если отвлечься от выводов двух работ и посмотреть на объекты, которые в них изучены, то нельзя сказать о непреодолимом противоречии. В указанной работе 2017 года вывод об электростатическом характере водородной связи делается на основании исследования единственного водородно-связанного комплекса — F–H;FH, для которого в обсуждаемой работе 2018 года как раз отмечается наименьший вклад ковалентной составляющей в общую энергию. Очевидно, что формулировка столь важного вывода о сути водородной связи только по одному примеру вряд ли может считаться объективной.


Скорее всего в ближайшее время мы увидим и другие попытки интерпретировать природу этого межмолекулярного взаимодействия, благодаря которому вода кипит при 100°С, а белки образуют сложные надмолекулярные структуры.
"Элементы" 20. 09. 2018.
https://elementy.ru/novosti_nauki/433334/V_energiyu_vodorodnoy_svyazi_sushchestvennyy_vklad_vnosyat_kovalentnye_vzaimodeystviya



Другие статьи в литературном дневнике: