Фермент эффективно разбирает пластик на кирпичики

Сибирская Хиджра: литературный дневник

Прорывом в химической деградации ПЭТ стала недавняя совместная работа химиков из Института биотехнологии в Тулузе и компании Carbios. Вначале авторы сравнили между собой самые эффективные ферменты, которые уже были предложены ранее. Испытаниям подверглись пять разных ферментов: гидролазы BTA1 и BTA2 почвенной бактерии Thermobifida fusca, кутиназа патогенного гриба Fusarium solani pisi, ПЭТ-аза грамотрицательной бактерии и кутиназа компостных листьев LCC — фермент, который в природе отвечает за расщепление кутина, особого вещества, выделяемого верхним слоем листа растения для уменьшения потерь воды и состоящего преимущественно из жирных кислот и их эфиров.
Все реакции проводили в слабощелочной среде (pH = 8–9) с аморфным полиэтилентерефталатом, а температуру выбирали в зависимости от стабильности фермента: LCC, BTA1 и BTA2 испытывали при температуре 65°C, а два других фермента — при температуре 40°C. Активность ферментов измеряли по количеству освободившейся терефталевой кислоты (которая в щелочном растворе находится преимущественно в форме терефталата натрия). Самым эффективным ферментом оказалась кутиназа компостных листьев LCC: ее эффективность была в 33 раза выше, чем у второго по эффективности фермента.


Ученые заметили, что скорость гидролиза со временем уменьшалась, а через три дня после начала реакции, когда гидролизован был только 31% ПЭТ, реакция практически остановилась. Чтобы убедиться, что накапливающиеся продукты гидролиза — этиленгликоль и терефталевая кислота — не ингибируют реакцию, ученые провели специальные тесты. Они запустили реакцию гидролиза заново, но уже в начале процесса добавили в реакционный сосуд избыток этиленгликоля и терефталевой кислоты. Эти добавки не повлияли на скорость гидролиза: она так же, как и в первом эксперименте сначала была высокой, но потом постепенно снизилась. Таким образом, главной причиной остановки оказалась недостаточная стабильность кутиназы LCC при нагревании.
Благодаря этим предварительным изысканиям ученые далее сосредоточились только на LCC. Взяв за основу этот фермент, они стали искать пути для повышения его активности и стабильности. Поскольку молекула LCC очень объемная (ее масса равна 28 000 Да; для сравнения — масса молекулы воды равна 18 Да), для начала ученые идентифицировали в ней участок, который наиболее активен при взаимодействии с цепью полиэтилентерефталата. Для этого использовали метод молекулярного докинга — теоретическое моделирование, которое позволяет предсказать наиболее выгодную для образования устойчивого комплекса ориентацию и конформацию одной молекулы относительно другой. Оказалось, что преимущественно полимерный субстрат связывается с длинным гидрофобным хвостом, который есть в структуре всех известных кутиназ. Этот участок состоит из 15 аминокислот. Ученые выбрали 11 из них для дальнейшей модификации — замены одних аминокислот на другие с целью подобрать более эффективную конфигурацию. Всего они перебрали 209 вариантов этого хвоста.
Ген, кодирующий компостную кутиназу в листьях растений, был коммерчески синтезирован с оптимизацией кодонов для экспрессии в клетках обычной кишечной палочки (E. coli). В обсуждаемой работе варианты LCC генерировали путем амплификации полноразмерной плазмиды с помощью метода полимеразной цепной реакции (ПЦР). Большинство модифицированных ферментов работало хуже, чем исходная кутиназа: три четверти всех вариантов показали специфическую активность менее 48% по сравнению с исходной (из них четверть показала совсем плохую активность — менее 1% от исходной). Всего по результатам этого отбора авторы отметили шесть модифицированных ферментов. Два из них показали специфическую активность лучше, чем исходная кутиназа. При замене исходного фенилаланина на изолейцин активность фермента увеличивалась почти на 25%, а при замене на триптофан — на 15%. Еще четыре фермента показали специфическую активность чуть хуже, чем исходная кутиназа, но зато имели более высокую температуру плавления (на 2–3°C выше) — этот параметр коррелирует с термической стабильностью фермента: как правило, чем выше температура плавления полимера, тем более он стабилен при высокой температуре.
Ученые попробовали улучшить термическую стабильность ферментов и другим способом — направленно добавив в структуру специальную мостиковую группу. В предыдущих исследованиях температуру плавления LCC сумели повысить добавлением мостика из двухвалентного кальция (S. Sulaiman et al., 2014. Crystal Structure and Thermodynamic and Kinetic Stability of Metagenome-Derived LC-Cutinase). Однако, кальций может отсоединяться от фермента и загрязнять продукт гидролиза ПЭТ — терефталевую кислоту, поэтому было решено заменить кальциевый мостик на серный. Для этого ученые нашли две позиции аминокислоты, которые при «сворачивании» молекулы фермента находятся ближе всего друг к другу, и заменили обе аминокислоты на этих позициях на цистеин — у этой аминокислоты в составе есть атом серы, который может образовывать связи с другой серой. Поэтому при сближении двух цистеиновых фрагментов между ними может образовываться дисульфидный мостик, который подобно крошечной булавке скрепляет молекулу кутиназы. Модификацию производили таким же способом, как и на предыдущих этапах работы. Оказалось, что добавка серного мостика к LCC повысила его температуру плавления до 94,5°C, что на 9,8 градусов больше, чем у исходного фермента, и на 0,5 градуса выше, чем у LCC c кальциевым мостиком. Активность фермента снизилась, но незначительно, всего на 28%: обе позиции, в которые вводили цистеин, находятся далеко от активного при гидролизе участка, поэтому их замены оказались не так критичны.
Наконец, ученые попробовали объединить два типа модификаций, чтобы получить ферменты, которые будут одновременно «запрограммированы» и на лучшую активность, и на лучшую стабильность. В итоге в «финал» испытаний вышли четыре фермента, в каждом из которых было сделано по три модификации. Все четыре фермента содержали серный мостик между двумя цистеинами, а также в каждом были сделаны по две замены в активном при гидролизе хвосте: одна для улучшения активности (либо на изолейцин, либо на триптофан) и одна для повышения стабильности (либо на глицин, либо на метионин).
Все четыре модифицированных фермента показали активность заметно выше, чем у исходной кутиназы LCC. При этом оба варианта с глицином оказались более эффективными, чем варианты с метионином. Эффективность двух глициновых вариантов (они обозначены ICCG и WCCG по первым буквам названий вводимых аминокислот) была очень близка: оба смогли расщепить 90% ПЭТ, но изолейциновый вариант справился быстрее (ему потребовалось 9,3 часа, а триптофановому — 10,5 часов).
В итоге именно ICCG-вариант модифицированного фермента LCC был выбран для испытаний в промышленных условиях. 20 килограммов полиэтилентерефталата измельчили и смешали с 78 литрами воды и 40 граммами фермента. Гидролиз проводили при температуре 72°C в слабощелочной среде (pH = 8), которую создали, добавив гидроксид натрия. После деполимеризации 90% исходного ПЭТ реакцию остановили и отделили твердый остаток полимера центрифугированием. Жидкую фазу затем пропустили через колонку с активированным углем и обработали раствором серной кислоты — это нужно, чтобы превратить терефталат натрия в терефталевую кислоту. После этого терефталевую кислоту можно отделить центрифугированием.


Терефталевая кислота имеет чистоту 99,8% и может быть использована для получения ПЭТ — здесь авторы придерживались стандартной методики: этерификация с этиленгликолем, затем поликонденсанция и твердофазная полимеризация. Скорость поликонденсации была такой же как в случае использования «первичной» терефталевой кислоты.
Полученный полиэтилентерефталат также тщательно протестировали и убедились, что он не отличается от ПЭТ, полученного традиционным способом. Всего в этом эксперименте ученые получили 12 килограммов ПЭТ — 60% от того количества, которое исходно пустили на переработку. Из полученного полиэтилентерефталата также изготовили пластиковые бутылки для напитков и убедились, что по прозрачности и механическим свойствам они не уступают традиционным бутылкам.
Подробнее "Элементы" 17.07.2020.




Другие статьи в литературном дневнике: