Парадокс лотереи и закона больших чисел Бернулли
Свидетельство о публикации №209070100188
Если говорить о лотереи, то, скажем для Израиля выиграть в первый приз составляет 1 к 18 млн. Человек, который выиграл знает, что его шанс был ничтожно мал, но он же видит, что люди выигрывают хоты бы раз в месяц или в два, и поэтому даже "зная", он не осознает "малость" своего шанса. Загвоздка в том, что шанс мал лишь для конкретного человека, а для страны в целом, с населением 6 млн очень даже логично выигрывать одну из 10-20 игр (играют не все, но и каждый игрок может заполнить более одной формы).
Классический расклад, как и в парадоксе дней рождения.
Медведев Дмитрий 12.08.2011 11:52 Заявить о нарушении
Да Вы и сами порадовали цифрами, Дмитрий. Говоря об Израиле, чисто по-еврейски, немного, эдак на пару миллионов уменьшили численность страны:) И потом с чего Вы решили, что главный приз выигрывают "раз-два в месяц". Это с потолка, уж извините. И не думайте, что люди, прям, все глупы, что не понимают ничтожность шанса. Понимают! Но затраты по сравнению с прибылью ничтожны настолько же, насколько ничтожен шанс выигрыша. Так что здесь, можно сказать, баланс. А некоторые люди вообще всю жизнь выигрывают! Недавно прочитал о женщине, которая после несчастья со здоровьем начала играть во все доступные викторины и лотереи. Так у неё вся квартира завалена разными призами. Дядька часто выигрывал в Русское лото с 1-2 билетиков, когда другие и с пачки-двух не получали ничего. Сам участвовал в лотерее на презентации, где 1-й главный приз -компьютер- выиграла женщина, купившая компьютер, то ест имевшая всего 1 билет-чек. А второй приз -монитор-выиграл парень, купивший монитор, тоже с 1м билетом-чеком. Людей было сотня-две. Впрочем, здесь возможна и подтасовка, что у нас не редкость.
Ну так парадокса-то и нет. Для одного человека вероятность выигрыша стремится к нулю, а для страны -к ста процентам. Это и есть мой вывод. Про дни рождения пробегал, но он совсем неадекватен данному, насколько помню. Достаточно вспомнить, как набирают в учебные классы.
Джастмэн 14.08.2011 11:17 Заявить о нарушении
"И не думайте, что люди, прям, все глупы, что не понимают ничтожность шанса" - я так не говорил. Моя цитата: "даже "зная", он не осознает "малость" своего шанса". Очень большие или очень маленькие цифры человек не способен осознать, т.е. ему важно пройти 10 км или 20 км, однако расстояние до луны 380 тыс или 400 тыс значения не имеет - он просто не способен осознать это, поскольку сам лично не оперирует такими расстояниями.
Шанс легко сократить с 18 млн. к 1 до 9 млн. к 1, всего лишь купив два билета. Человек представляет себе это невероятным продвижением. И речь не в глупости, а в осознании. На моей памяти редко... ОЧЕНЬ РЕДКО человек покупает ВСЕГО ОДНУ колонку в лото, именно по этой причине: повысить шанс вдвое-втрое-...-в 10 раз. Хотя по сути это не имеет значения.
Медведев Дмитрий 15.08.2011 18:06 Заявить о нарушении
АС: дочитав до слов «почти 5 лет я проработал главой компьютерного отдела израильской…», читатель автоматически добавил «разведки» и, не то икнув, не то хихикнув, судорожно сглотнул...#:-0))
Насчёт повышения шансов: если брать 1-2 билета, то повышение считайте ноль. Если начать реально повышать, то игра будет в убыток, потому что нет гарантии, что в итоге всё окупится.
Ну если вы из первых рук утверждаете, что 1-2 раза в месяц берут главный приз, то поверю. Потому что косвенно подтверждается: даже в спортивном тотализаторе, где 1-й приз можно взять, угадав 15 игр, по три варианта на каждую, угадывать могут 15 несколько раз в год. Последний раз кстати около 30млн рублей~ 1млн дол выиграл пару недель назад 1 ОДИН!!! билет из ОДНОГО ВАРИАНТА!!! Ну как не поверить в подтасовку?! Потому что много раз спорили с людьми, что только два варианта минимум будут всегда брать 1-й приз,если джэкпот огромен. Контора не отдаст. Тут я, возможно, и преувеличил немного.
В принципе с Вами согласен. Но сути это, к сожалению, не меняет – выиграть всё также сложно:).
Рад общению. И байки у Вас симпатишные.
Джастмэн 15.08.2011 19:46 Заявить о нарушении
Кристина Ха 29.04.2012 18:51 Заявить о нарушении
Джастмэн 10.06.2012 01:25 Заявить о нарушении