Фундаментальная для жизни находка эволюции

«Я хочу узнать, как Господь создал этот мир.    Мне неинтересно отдельно то или иное явление, спектр того или иного элемента;   я хочу знать Его мысли. Всё остальное – детали».
А. Эйнштейн

Выйдя в процессе эволюции на эффективное решение какой-либо важной «технической» задачи, живая природа закрепляет его и в дальнейшем, как правило, не ограничивается использованием только в одном направлении. Примеров тому немало. Но все они по своим масштабам и значимости для судеб жизни в самом фундаментальном смысле не идут ни в какое сравнение с элементарной линейной (одномерной) структурой, имя которой - нить.

1. ВОДА ЖИЗНИ

«Жизнь есть одушевленная вода». Этот афоризм Э. Дюбуа-Реймона, говорят, очень нравился В.И. Вернадскому.
В самом деле, высшие формы жизни содержат воду в количестве 80 - 85% от общей массы, низшие - 95 -98% и даже более, причем основная ее часть не связана с живым веществом химически. Нет на Земле горной породы, которая обладала бы такой влагоемкостью. И можно ли тогда живое вещество называть живым, если оно состоит главным образом из воды?

О значении воды для жизни, казалось бы, знаем всё. И, тем не менее, когда говорим: «без воды нет жизни», «вода - универсальный биологический растворитель», «внутренняя среда жизни» и т.п., понимаем ли, о какой именно воде идет речь?

Известны три агрегатных состояния вещества, и это в полной мере относится к воде, - твердое, жидкое и газообразное (плазма в данном случае не в счет). Так вот ни то, ни другое, ни третье не могут претендовать на внутреннюю среду жизни, они абсолютно неприемлемы для нее. Твердое - ввиду того, что его атомы слишком жестко связаны друг с другом и недалеко колеблются около своего центра. Жидкая, а тем более, газообразная фаза, напротив, слишком неустойчивы относительно тепловых флуктуаций. В них происходит беспорядочное движение атомов, что исключает саму возможность существования и стабильного функционирования сложных молекулярно-биологических систем. Живое вещество по определению не может быть как жестким, так и свободно текучим, оно должно быть в меру подвижным и лабильным. И, следовательно, только то относительно вязкое состояние воды, к которому применимо слово «консистенция», пригодно для жизни. Но как же достигается это совершенно необходимое для жизни состояние?

Очень просто и технически на редкость эффективно, с помощью полимерных микронитей. Оказавшись в водной среде даже в ничтожно малом количестве (сотые доли процента от ее массы), полимерные микронити (они настолько тонки, что отношение длины к поперечным размерам идет у них на сотни тысяч и даже на миллионы, и в силу таких пограничных между макро- и микромиром размеров они находятся еще во власти законов классической физики, но в то же время способны порождать квантовые эффекты) соединяются друг с другом и переплетаются во всех направлениях, собираясь в очень густую трехмерную сеть-паутину. Жидкая вода при этом удивительным образом преображается. Застряв в ячейках сети, она теряет присущую ей подвижность, лишается текучести и приобретает вдруг (в положительном интервале температур!) непривычные для жидкости свойства твердого тела: жесткость, упругость, пластичность, способность сохранять заданную ей форму и т.д. Иными словами, вода переходит в совершенно иное, по сути дела четвертое агрегатное состояние, среднее между жидким и твердым. Она приобретает благоприятную для жизни консистенцию!

Именно в таком качестве существует ныне цитозоль (он же клеточный матрикс, или гиалоплазма, или внутренняя среда жизни) - основная по массе и объему часть каждой живой клетки. При специальных методах исследования цитозоль (его нетрудно выделить в чистом виде путем последовательного центрифугирования гомогенатов клеток) выглядит как густая трехмерная сеть, которая составлена из тонких (2 - 3 нм) фибрилл, пересекающих цитоплазму в различных направлениях и охватывающих все внутренние образования: микротрубочки, различного рода нитевидные структуры, мембранизированные органеллы и цитоплазматическую мембрану. Ячейки сети заполнены иммобилизованной водой, в местах пересечения ее нитей сосредоточены группы рибосом.

2. ХИМИЯ ИММОБИЛИЗОВАННЫХ СОЕДИНЕНИЙ

Однако в лабораторной практике, посвященной изучению внутриклеточных биохимических процессов, оперируют, как правило, водными растворами реагентов по традиции, унаследованной от общей химии. Здесь бытуют такие понятия, как концентрация, растворимость, pH и тому подобные параметры, выработанные в свое время применительно к водным растворам. Клеточный транспорт по-прежнему рассматривается как процесс переноса комплекса молекул через водную среду. Но такой воды, которая присутствует в пробирке (где господствуют законы диффузии и беспорядочного теплового движения молекул, где все тяжелое самопроизвольно оседает, а легкое всплывает на поверхность и т.д.) в живой клетке на самом деле нет.

Текстурально (лат. texo – тку. сплетаю) иммобилизованная внутриклеточная среда по своим физическим свойствам радикально отличается от водных растворов молекулярных соединений, о которых написаны все учебники по биохимии. В ней значительно нарушено соотношение сил в сравнении с тем, что наблюдается в пробирке. В частности, гравитация мало ощутима (и это очень важно для жизни, в противном случае внутриклеточные структуры неизбежно и постоянно осаждались бы из раствора, что накладывало бы существенные и трудно преодолимые ограничения на возможность ее существования и эволюции).

А не происходит так оттого, что все внутриклеточные элементы, субъединицы и агрегаты (даже те их них, которые традиционно считаются водорастворимыми) не плавают свободно в жидкости, как это имеет место в экспериментальных водных растворах полимеров, а преимущественно закреплены на нитях цитоскелета (они буквально застряли в его сетях), что не может не сказаться самым существенным образом не только на их подвижности и положении в пространстве, но и на самих реакционных способностях.

Более того, структурные соединения в клетке не диффундируют свободно к пункту назначения, а принудительно (на поводке, на привязи) доставляются точно по адресу (в нужное время и в нужное место) посредством актин-миозиновой канатной почты. Один конец транспортной нити наращивается в направлении движения груза за счет присоединения все новых единиц (сегментов) белка, другой соответственно укорачивается. И хотя общая длина нити не меняется, она (и все, что на ней закреплено) движется в заданном направлении, как белье на прищепке. Канатные дороги пронизывают вдоль и поперек всю клетку!
Наконец, следует учитывать и то важное обстоятельство, что в цитоплазме очень мало повторностей биологических молекул определенного вида, тогда как все выводы классической химии приобретают смысл и вероятностное значение только на фоне больших чисел.

А коли так, реальная химия клетки весьма далека от той, что излагается в университетских курсах. Это нечто принципиально иное. Это во многом еще не понятая нами химия текстурально иммобилизованных макромолекулярных соединений, несомненно, представляющая одно из специфических (атрибутивных), но не получивших соответствующего их значимости научного понимания, качеств жизни.

3. ЖИЗНЬ ЕСТЬ СВОБОДА В ОБЪЯТИЯХ ПАУТИНЫ

Не будем, однако, углубляться в дальнейшие подробности. В контексте рассматриваемой проблемы важно понять следующее: цитозоль являет нам архаический образ преджизни, то физическое состояние, которому суждено было стать изначальной внутренней средой жизни. В далеком геологическом прошлом союз воды и нити открыл на Земле новые возможности для дальнейшей самоорганизации материи, он создал определенные и совершенно необходимые предпосылки к предстоящей биологической эволюции.

Во-первых, осуществилось столь необходимое для грядущей жизни фазовое обособление, индивидуализация и мембранизация материальной предбиологической системы (будь то коацерваты Опарина или протеидные микросферы Фокса) от окружающей среды (обитающая в воде амеба-протей почти на100% состоит из воды, но это уже не вода, а «элементарная ячейка жизни»). Во-вторых, наметилось становление упомянутой внутренней среды. В-третьих, появились присущие жизни зачатки метаболизма и гомеостаза (особенно если в роли нитей выступают полипептидные молекулы). В общем, сложились предпосылки для образования первичной «сомы» (если следовать в расширительном значении несколько забытой терминологии А. Вейсмана). Это, конечно, еще не жизнь и даже не преджизнь. Но это уже благоприятная предбиологическая почва, на которую могли бы упасть некие семена (некая «зародышевая плазма»), чтобы дать жизнь.

В то же время мы приходим на основании изложенного к еще одному парадоксальному заключению общебиологического порядка: физико-механическая идея, заключенная в банальной паутине (которая как-то незаметно заводится во всех углах наших комнат), имеет фундаментальное значение для жизни, включая и само ее происхождение. Живое вещество биосферы, которое совершенно не мыслится без движения, способно существовать и реализовать себя только в тесных, сильно сковывающих его объятиях паутины. Биологическая свобода (если иметь в виду весь комплекс функциональных процессов внутриклеточного метаболизма) может осуществляться только в рамках определенной (текстурально обусловленной и регламентированной) несвободы, динамика - в рамках статики, то есть, нематостатики (от греч. nema - нить). Жизнь есть свобода в объятиях паутины!

4. БИОТЕКСТИЛЬ

Но продолжим наше исследование. Слово «материя» в переводе с латинского буквально означает вещь, вещество (то есть нечто такое, что можно ощутить, потрогать, измерить). В философском смысле – это объективная реальность, отображаемая нашим сознанием. В естественнонаучном понимании – вещественная основа, которая образует физические тела, и которая имеет, стало быть, определенное строение. Но есть и другой, техно-текстильный оттенок этого слова, когда оно подразумевает какую-то связанную из нитей ткань. Это может быть обыкновенная хлопковая материя, но может быть и шёлковая, льняная, шерстяная, синтетическая…

Так вот, живая материя, помимо того, что о ней уже много сказано в научных и философских категориях и терминах, есть, прежде всего, материя именно в этом, текстильном смысле. Дело в том, что всякая биологическая плоть сконструирована, как и текстильная ткань, из нитей (главным образом белковых и целлюлозных) и, следовательно, она имеет матерчатую структуру. Живая материя в физико-механическом отношении есть по существу не что иное, как биологический текстиль.

В поисках специфических (или, как еще говорят, атрибутивных) признаков жизни, которые можно было бы противопоставить неживой природе, остался совершенно без внимания реальный, в принципе весьма простой и к тому же вполне доступный для наблюдения факт. От механического удара твердый и очень крепкий камень дробится на части, а какая-нибудь мягкая и  с виду податливая биологическая плоть в этой ситуации, напротив, сохраняет свою целостность, лишь по месту приложения силы могут возникать (как это хорошо известно каждому из нас с раннего детства) некоторые локальные дефекты. Налицо диаметрально противоположное отношение к прочности как способности сопротивляться разрушению под действием внешних нагрузок (ими обычно являются растяжение, сжатие, изгиб).

Все биологические тела от мала до велика построены, в отличие от широко распространенных в природе кристаллических минералов, из линейно (одномерно) организованных элементарных единиц материи, длина которых многократно превышает поперечные размеры, а именно - из полимерных нитей (например, коллагеновых или целлюлозных). Будучи достаточно длинной, тонкой, эластичной, полимерная нить способна, изгибаясь, повторять и описывать любые геометрические формы и очертания. Она чрезвычайно предрасположена к прочному сцеплению и переплетению с себе подобными, что открывает путь к безграничному пространственному формообразованию. Из нити можно сделать (то есть связать) всё. И природа не прошла мимо такой замечательной возможности. Нематоморфизм и текстуральность приобрели в построении биологических систем, если говорить языком физики, не только ближний, но и дальний порядок.

Подлинное царство (микрокосм) нитей открывает, прежде всего, содержимое всякой живой клетки, которое ассоциируется нами (вслед за Ж. Бюффоном и В.И. Вернадским) с так называемым живым веществом. Внутриклеточные нити (система цтоскелета, микрофибриллы и микрофиламенты, тончайшая кисея гиалоплазмы) причудливо преплетаются между собой, соединяются и разъединяются в определенном, сложно организованном порядке, образуя в совокупности многомерную, непостижимо запутанную сеть. Построенные в таком ключе элементарные ячейки жизни соединяются между собой в «государство клеток» (как сказал бы Р. Вирхов) нитями внеклеточного матрикса, образуя ткани. А те в свою очередь интегрируются аналогичным образом в органы и системы органов, так что в итоге получается связанный из нитей целый организм.

Текстуральный принцип структурной организации живого имеет глубокий физико-механический смысл. Выполненная из нитей конструкция внутренне противоречива, в ней органически сочетаются противоположные начала - дискретность (отдельных нитей) и непрерывность (системы в целом). При ударе по минеральному кристаллическому монолиту механическое напряжение концентрируется в месте образования первичной трещины, которая мгновенно разрастаясь и ветвясь, приводит его к разрушению. В отличие от этого, переплетенные между собой полимерные нити, интегрирующие биологическую плоть в единое целое, способствуют рассасыванию напряжения (возникающего по месту приложения силы) и перераспределению нагрузки на соседние элементы. Так что дефект, приведший к разрыву отдельных нитей, не приобретает угрожающих размеров. Он тотчас угасает и локализуется по месту первичного образования. Каждая нить (и даже ее отдельный, зажатый между двумя точками участок) будучи частью единой связной системы, в то же время сохраняет свою физическую индивидуальность и, следовательно, ее разрыв отнюдь не влечет за собой разрушения всей конструкции. Сплетенный из нитей трос гораздо прочнее эквивалентного ему по массе монолитного стержня (к тому же он обладает высокой и легко обратимой гибкостью в силу свободного скольжения друг относительно друга составляющих его элементов).

Вот почему, соударяясь с твердыми телами и друг с другом, падая и ушибаясь, вступая в физическое единоборство, преодолевая сопротивление воздушных и водных потоков, меняя в зависимости от обстоятельств внешние очертания, живые существа (исторически поначалу, представленные единственной клеткой) не распадаются на части. В противном случае жизнь уже по этой только причине (сугубо механического, структурного свойства!) была бы в земных условиях абсолютно невозможна. И, следовательно, мы имеем все основания отнести нематоморфизм и текстуральность, эти фундаментальные принципы биологической архитектоники, к числу атрибутивных в понимании сущности жизни.

Их происхождение вполне объяснимо. Будучи порождением линейного порядка, белково-нуклеиновая функциональная система неуклонно поддерживает и бесконечно воспроизводит его в себе. В процессе репликации, транскрипции и трансляции на линейно организованной матричной основе нить порождает и множит нить. Сходящие с матриц элементарные фибриллы собираются в нити более высокого ранга (аналогично тому, как в текстильном производстве из коротких и сравнительно тонких волокон формируется пряжа). На их основе в конечном итоге и создаются (кристаллизуются) различного размера белковые структурные нити.

Наряду с этим вторично, но уже на ранних этапах существования биосферы приобрёл грандиозное по масштабам своего выражения биосинтез (опять-таки линейных!) полисахаридов, которые получили главным образом строительное назначение. У растений - это целлюлоза (в общей массе органических соединений биосферы она заняла с течением времени первое место), а в мире гетеротрофных организмов (членистоногие, грибы и др.) - целлюлозоподобный хитин).

Жизнь – это бесконечный и непрерывный процесс прядения и вязания. Всякая живая система, даже самая малая, стала по сути дела грандиозной текстильной фабрикой, а её продукция – единственным и универсальным строительным материалом самой живой субстанции. Элементы, из которых строят здание, скрепляют между собой цементом. Детали автомобиля соединяют нарезными болтами и гайками. Что же касается биологических конструкций, то все они завязаны нитью.
Все живое из нити и от нити. Все живое есть связка, клубок нитей. И только потому мы не замечаем визуально этого непреложного и бесспорного факта в своей обыденной практике, что биологические нити либо слишком тонки, либо к тому же еще и плотно упакованы.

5. ЛИНЕЙНЫЙ ПРИНЦИП БИОЛОГИЧЕСКОЙ АРХИТЕКТОНИКИ

Если бы удалось разобрать до конца какое-нибудь существо (или хотя бы его часть) на структурные составляющие (подобно тому, как мы это делаем порой, распуская связанный из пряжи свитер), то от него, естественно, не осталось бы ничего, кроме различного рода нитей. При внимательном анализе разобранного материала мы бы увидели, во-первых, что нити эти главным образом двух типов - белковые и углеводные. Во-вторых, что нити различаются по толщине. В третьих, что они устроены иерархически, по матрёшечному (фрактальному) принципу: нити большего диаметра последовательно расщепляются продольно на нити меньшего диаметра вплоть до линейных макромолекул, с которых начиналось их формирование. Наконец, в четвёртых, что все мономеры образующие нити, только левые (в случае белковых нитей) и только правые (в случае углеводных).

Проще всего осуществить разборку на составные линейные элементы, конечно, вирусов, микроскопическое тело которых состоит всего лишь из двух видов нитей. Находящаяся в центре полинуклеотидная нить (ДНК или РНК, одноцепочечная или двухцепочечная) заключена в полипептидную оболочку-капсид. И, следовательно, вся задача по разборке сводится к тому, чтобы распустить на составляющие нити именно этот капсид, последовательно извлекая белковые субъединицы и разматывая их. Что же касается субвирусных частиц, так называемых вироидов, то с ними и вовсе не требуется никакой разборки, поскольку они лишены капсида и представлены только однонитиевой РНК (возможно, в некоторых случаях и ДНК), которая способна автономно реплицироваться в инфицированных хозяйских клетках. Как видим, при всей своей морфологической простоте и функциональной специфике, вирусы несут в себе все признаки биологической архитектоники, присущие одноклеточным и многоклеточным организмам, то есть живой материи вообще.

Объясняя, как устроен организм на уровне элементарной ячейки жизни, знаменитая клеточная теория (сформулированная ещё в первой половине девятнадцатого столетия), не дает представления о структурной организации собственно живого вещества, живой материи как таковой, и ныне уже не может считаться достаточной в контексте теории жизни. В основе жизни, включая и тот ее случай, когда целый организм представлен всего лишь одной клеткой, лежат иные принципы -   более глубокого, тектонического (греч. tektonike - строительное искусство, archi – старший, главный, первоначальный) порядка. Это нематоморфизм - нитеобразие, нитеподобие, нитеформие и порождённая им текстуральность - конструирование (вязание) живой материи из нитей. Этим принципам подвластны даже такие мельчайшие, субмикроскопические существа, как вирусы, которые, будучи живыми организмами, никак не вписываются в классическую клеточную теорию в силу своей морфо-функциональной специфики.

6. МЕЖВИДОВЫЕ ТЕКСТУРАЛЬНЫЕ (ПАУТИННЫЕ) ОТНОШЕНИЯ

Паутинный принцип нашел широкое применение в межвидовых экологических отношениях различных групп живых организмов, генетически порой весьма отдаленных друг от друга.
Стереотипные представления о ловчих сетях обычно связаны у нас с пауками, эволюционное формирование которых палеонтологи относят к верхнему силуру. Однако истоки этого механизма куда более древние.

Еще в докембрии простейшие морские животные фораминиферы (Foraminifera) и радиолярии (Radiolaria) для улавливания добычи использовали не что иное, как распростертые ловчие сети, образуемые в результате анастомоза тончайших нитей - цитоплазматических ризоподий. У большинства слизевиков (Myxomyceta) плазмодий (вегетативное тело) имеет вид сетки, построенной из переплетающихся и сливающихся тяжей, с помощью которой захватываются бактерии, микроскопические животные и водоросли.      
Но так могли поступать и еще более древние, прокариотные организмы. Известно, что ныне существующие хищные нитчатые бактерии (Cyclobacteriales) объединяются в группы посредством волокнистых выростов-плазмодесм, в результате чего образуются довольно пространные (в масштабах микромира) коллективные ловчие сети.

Двухслойные многоклеточные животные Кишечнополостные (Coelenterata), будь то полипы или медузы, которыми буквально насыщен океан, опутывают добычу разного рода нитями, которыми они выстреливают перед захватом из своих стрекательных клеток. Приобретение такого экстравагантного механизма нападения и защиты в значительной мере определило дальнейшее процветание этих, в общем-то, весьма примитивных (в смысле уровня биологической организации) многоклеточных существ.

В тех или иных формах ловчие сети применяют и более высоко органгизованные морские животные. Так, представитель многощетинковых кольчатых червей (Polychaeta) хетоптер добывает пищу при помощи липкой ловчей сети, которую строит впереди своего большого рта (сам червь при этом сидит в изогнутой дугой трубке). Прокачиваемая через трубку вода процеживается сквозь сеть, в которой застревают мелкие организмы. Время от времени червь съедает сетку вместе с уловленной ею добычей, после чего строит новую. Среди насекомых подобным образом поступают пресноводные ручейники (Trichoptera), личинки которых строят из паутинных нитей различные по форме ловчие сооружения, функционирующие на манер планктонной сети.

Кульминационным пунктом в отношении сетеобразных ловчих конструкций, бесспорно, явились наземные членистоногие, в особенности пауки (Aranei), многосторонние функции которых на основе продуцируемых ими нитей называют паутинной деятельностью или даже паутинной индустрией.
Во всех своих жизненных проявлениях, поддерживающих существование вида (добывание пищи, размножение, расселение и переживание неблагоприятных условий), пауки используют нить. Из нее строятся убежища и, разумеется, ловчие сети (их разнообразие, изящность и хитроумность конструкций просто поражают), с помощью нити происходит сложная процедура спаривания, из нее плетутся яйцевой кокон и зимовочный мешок, на ней молодь разносится ветром и так далее. Словом, паук взаимодействует с окружающей средой не столько непосредственно, как другие животные, сколько через нитевидные структуры, которые у каждого вида соответствуют его жизненным нуждам и той конкретной обстановке, в которой он обитает.

Но паутина – это произведение не только животного мира. Исключительный интерес в контексте рассматриваемой проблемы представляют собой грибы (Fungi), способные в силу своей морфологической специфики создавать всюду ажурное переплетение тонких (1,5 - 10 мкм) нитевидных гиф (hyphe греч. - ткань, паутина), которыми они охватывают принадлежащий им питательный субстрат.

В этом отношении особого внимания заслуживают обитающие в почве хищные гифомицеты (Hyphomicetales). Эти всесветно распространенные грибы образуют на своих гифах систему ловчих колец, напоминающих в совокупности ячейки сети, в которых застревают и запутываются в момент движения их жертвы – почвенные нематоды (Nematoda), а также простейшие, коловратки, мелкие насекомые и тому подобные почвообитающие животные.
Строение ловчих конструкций у хищных грибов также разнообразно, но самый распространенный тип - клейкие сети, состоящие из большого количества колец-ячеек. Такие сети образуются в результате обильного ветвления и анастомоза гиф. Они нередко достигают достаточно крупных размеров, и вероятность попадания в них многочисленных подвижных нематод очень велика. Нематода, случайно попавшая в сеть, пытается пройти сквозь кольцо и застревает в нем, после чего утилизируется хищником путем ферментативного воздействия на тело жертвы.

Потенциальная  способность грибов улавливать добычу в сети реально способствовала и другому очень важному и куда более значимому направлению биологической эволюции - возникновению двойных гетерогенных организмов лишайников (Lichenes). Существовавшие в течение миллионов лет совершенно независимо, грибы и водоросли на определенном историческом этапе вдруг «нашли» друг друга и образовали столь гармоничный комплекс, что сложное строение его было не сразу и с большим трудом разгадано. В лишайниковом симбиозе, в отличие от многих других аналогов, возникает такое биологическое единство двух различных организмов (гетеротрофный гриб-микобионт и автотрофная водоросль-фикобионт), которое приводит к появлению принципиально отличного от них третьего. Вместе с тем каждый партнер сохраняет черты той группы организмов, из которой он вышел, и ни у одного из них не появляется тенденции к преобразованию в составную часть другого.

Но главная интрига состоит здесь в том, что у лишайников есть специальные типы гиф. Это так называемые ищущие и охватывающие гифы. Их предназначение - разыскивать и улавливать клетки водорослей. Эти гифы особенно заметны в начале развития слоевища лишайников из прорастающей споры, когда вокруг либо вовсе еще нет водорослей, либо их очень мало. Поисковые гифы прорастающего гриба захватывают найденную водоросль, плотно и тесно оплетая ее с разных сторон, после чего следует размножение обоих партнеров, так что формирующееся на этой основе слоевище лишайника в итоге представляет собою не что иное, как водоросль, перепутанную и удерживаемую гифами гриба.

Полифилитическое происхождение лишайников лишь подтверждает решающее значение механизма фиксации водоросли гифами гриба, принципиально остающегося неизменным при разной комбинации партнеров, в том числе и в экспериментальных условиях. Этот начальный этап развития какого-либо лишайника как бы воспроизводит историю столь парадоксального направления эволюции.

Утвердившееся в науке о лишайниках традиционное представление, согласно которому активным и ведущим элементом в эволюции лишайников была водоросль, вызывает сомнение. Более вероятным представляется другой сценарий, прямо противоположный первому: грибы изначально поймали водоросль, проявив свойственную им активность и агрессивность, заключили ее в сеть, вступили с ней в симбиотические отношения, на основе чего и произошли лишайники.

Грибная паутина проявляет себя созидательно еще и в другом, тоже крайне важном для судеб  биосферы качестве. Лесные почвы в буквальном смысле охвачены сетями шляпочных грибов, которые посредством микоризных образований вступают к тому же в тесный контакт с корнями растений, так что образуется единая связная система.

Растения, снабженные микоризой, активно усваивают органические соединения азота. Микоризные грибы интенсивно воздействуют на минералы почвы различными органическими кислотами, под действием которых активно извлекаются калий из силикатов, фосфор из ортоклаза и апатита. Кроме того, грибы продуцируют нужные растениям биологически активные вещества.

Но и это еще не всё! Поскольку гифы грибов соединяют разные деревья в пределах контролируемого ими участка леса, продукты фотосинтеза одного растения передаются (по грибницам мицелия) другому. Благодаря этому в лесу устанавливается не только вертикальный транспорт биогенных элементов, который организуется самими деревьями. Своей жизнедеятельностью грибы дополнительно создают скрытый от внешнего наблюдения внутрипочвенный горизонтальный транспорт! А если учесть, что по системе гиф возможен еще информационный обмен, тогда и вовсе образуется некий лесной «Интернет».
Это удивительное и чрезвычайно важное для жизни леса обстоятельство проистекает не только от известной физиологической пластичности грибов (их «полихимизма»), но прежде всего потому, что грибы способны неограниченно создавать и чрезвычайно эффективно использовать пространные мицелиальные  сети.

Перейдем теперь к самим растениям в контексте вездесущей паутины. Вначале рассмотрим те из них, которые имеют тонкие и длинные вьющиеся стебли. Переплетая ими другие растения, они не только используют их в качестве опоры (чем нередко и ограничивают понимание этого общеизвестного факта, квалифицируя подобные растения как неспособные самостоятельно сохранять вертикальное положение стебля), но и серьезно угнетают их (пусть даже вторично), добиваясь тем самым на определенном участке жизненного пространства преимущества в борьбе за существование.

Лазящие и вьющиеся растения образуют экоморфологическую группу, именуемую лианами (от франц. lier - связывать). В половине всех семейств цветковых растений имеются представители лиан, которые в настоящее время широко распространены в растительном покрове Земли. Лиановая экоморфа первично выработалась у растений в ходе эволюции (если иметь в виду тропические леса) как приспособление в борьбе за свет при минимальной затрате на эту борьбу органического вещества (в сравнении, например, с деревьями, которым приходится поддерживать бремя тяжелых ветвей при помощи массивного ствола).

В средних широтах преобладают травянистые лианы, которые, однако, выигрывают здесь уже не столько в борьбе за свет, сколько за почвенное питание и жизненное пространство вообще. Например, одно растение вьюнка полевого (Convolvulus arvensis) потенциально способно опутать несколько квадратных метров посевов культурных растений. Хлебные злаки при этом сильно полегают. Особенно негативные последствия возникают в полегшем посеве при сырой погоде, когда опутанные и пригнувшиеся стебли злаков, уже не способные подняться, гниют и погибают. С другой стороны, сильно перепутанная лианами растительная масса затрудняет уборку урожая, вызывая даже остановку и поломку уборочных машин (по аналогии с морскими судами, когда они приходят в контакт с рыболовецкими сетями).
К вьюнку очень близок род повой, или калистегия (Calystegia). В поймах среднерусских рек летом всегда можно увидеть обширные участки, где типичная для этих мест травянистая, да и кустарниковая растительность бывает сплошь переплетена и буквально задушена им.

Масштабы отрицательного воздействия лиан достигают своего апогея, если присущий им механический эффект сочетается с физиологическим паразитизмом на тех или иных растениях. Такими качествами в полной мере обладает семейство повиликовых (Cuscutaceae), представители которого широко распространены на всех континентах. Повилики наносят огромный вред урожаю культурных растений, они быстро размножаются, их трудно искоренить. Одна особь паразита может опутать десятки соседних растений, а повилика льняная - до 100 растений. Это часто приводит к полной гибели посевов.

7. БИО-ГЕОТЕКСТИЛЬ

На определенном этапе эволюции биосферы паутина становится грандиозным по своим масштабам средообразующим фактором. Качественно новым проявлением паутинного принципа, его подлинным триумфом становится заключение в сеть ни много, ни мало - поверхностного слоя континентальной коры выветривания! Охваченный ею, этот слой приобретает все признаки соединительнотканного или даже кожного строения. Он пронизывается (прошивается, переплетается, простёгивается) множеством разнообразных по величине биогенных нитей. В их роли выступают уже непосредственно организмы, точнее говоря, экоморфологические образования высших автотрофов, а также грибов и водорослей. Масштаб другой, но физико-механическая суть всё та же. Да и устроены внешние макроскопические нити (как и те, что образуют организм) иерархически, по фрактально-матрёшечному принципу. Они так же разложимы на линейные элементы в порядке уменьшения их толщины, вплоть до первичных целлюлозных волокон.

С проникновением биологической нити в земную твердь текстуральный принцип интеграции биологических систем становится средообразующим фактором глобального, поверхностно-планетарного масштаба. В тесных объятиях «паутины» поверхностный слой континентальной коры выветривания, образованный из неустойчивых частиц мелкозёма, стабилизируется. Он теряет свою подвижность, неизбежно возникающую всюду в земных условиях под действием воздушных и водных потоков. Тем самым создаются совершенно беспрецедентные для прошлой истории биосферы и крайне необходимые условия для прогрессивной эволюции долгоживущих запасов складированного почвенного плодородия (прямо по месту их первичного образования). Этот бесценный ресурс представляет собой материальный фундамент нынешней биосферы: от него питаются и функционально зависят не только все наземные, но в конечном итоге - и океанические формы жизни. Без «паутины» почвообразование прерывается и эволюция поверхностного слоя материнской горной породы всецело переходит в категорию энтропийных геологических процессов.

Методично разрушая текстуральную основу почвенного покрова (с тех пор, как деревянная соха впервые коснулась земли) и, теряя его, мы всё больше убеждаемся на горьком опыте в том, что ловчие сети имеют принципиальное, основополагающее значение не только для живого вещества, но и для биосферы Земли как глобальной экосистемы.

ЗАКЛЮЧЕНИЕ

Материальная (вещественная, телесная) нить стала универсальной и самой счастливой для жизни находкой вселенской эволюции. Она положена в основу грандиозной, фундаментальной и всеобъемлющей для биосферы фрактальной системы. С помощью нити решаются многие жизненно важные задачи. Наиболее значимые среди них следующие:

1. Союз воды и нити обусловил создание внутренней среды жизни.
2. С нитью связано абсолютно необходимое для жизни нарушение оптической симметрии на молекулярном уровне (специально об этом будет в моей публикации «Левое и правое: главная загадка жизни»).
3. На нити осуществлена запись, хранение и воспроизведение генетической информации.
4. Нить положена в основу всей биологической архитектоники. Она стала главным конструктором жизни.
5. Воплотившись в ловчие сети, нить нашла широкое применение в экологических межвидовых отношениях.
6. На определенном этапе эволюции биосферы нить стала глобальным экологическим фактором. С ее помощью осуществлены стабилизация континентальной коры выветривания и создание на ней долгоживущих запасов складированного почвенного плодородия, ставшего материальным фундаментом биосферы.

Ну, а если совсем кратко и о самом главном, - нить открыла эволюционный путь к самой жизни. Куда же более?


Рецензии
Я далёк от философии. Смущает употреблённый вами термин "Живая материя". Меня учили, что вся материя живая, но есть "Активная материя" - например кленовый лист и "Пассивная материя" допустим обожженный кирпич. А как в философии?

Михаил Майтрин   03.01.2021 09:25     Заявить о нарушении
Добрый день, Михаил! С Новым годом!

Живая материя - это не только в философии, но и в естествознании тоже. Например, можно говорить о природе живой материи в естественнонаучном понимании.

=Меня учили, что вся материя живая=
Интересно, где так учили?

С уважением,

Альберт Кулик   03.01.2021 13:14   Заявить о нарушении
В теософии немного по другому. Хотя иногда я использую термин "Живая материя" но делаю пояснение о Активной и Пассивной материи. Не сочтите за занудство, просто интересно как мыслит философ. Меня смущает то, что, если мы что-то называем "Живой материей", то противоположность этого "Мёртвая материя". В такой логике Человек это синтез Живой и мёртвой материи. В общем чем больше об этом задумываюсь, тем больше склоняюсь к верности теософской концепции материи.

Михаил Майтрин   03.01.2021 17:10   Заявить о нарушении
Должен сказать, я не имею прямого отношения к философии. И теософия - не моя область.
Я естественник, точнее говоря - биолог.

=Меня смущает то, что, если мы что-то называем "Живой материей", то противоположность этого "Мёртвая материя".=
Ну, зачем "мертвая"? Есть живая природа (материя). А есть неживая природа (материя).
Эти понятия широко употребляются в научной терминологии.

Альберт Кулик   03.01.2021 21:25   Заявить о нарушении