Физическое бессмертие достижимо
На основе источников, возможны неточности
Содержимое ответа
Возможно, имелось в виду видео «ПРЕКРАСНАЯ ЭПОХА. БЕССМЕРТИЕ. РУССКИЙ ФАУСТ. КОД КАРПАТИ. БЕРЛИН 2040. МОСКВА 2042» от пользователя «Николае Карпати», опубликованное 11 июля 2025 года на платформе Rutube.
В нём автор рассказывает о своей литературной трилогии («Русский Фауст», «Всемирный посол бега», «Моя политическая биография») и о поисках способов продления жизни и эликсира бессмертия.
Также упоминается, что в произведениях Николае Карпати есть программа продления жизни «Живи 120 лет и более», которая включает в себя практики бега на длинные дистанции, голодания и моржевания, а также популяризацию крионики и криотерапии.
На целебных свойствах холода, известных со времен Авиценны, основан современный метод физиотерапевтического воздействия на организм с лечебной и оздоровительной целью – криотерапия. Медицинская практика показала, что холод низких температур (от -30 до -180 0С) положительно сказывается на работе иммунной, эндокринной и кровеносной систем.
ГЕННАЯ ИНЖЕНЕРИЯ И КЛЕТКИ СМЕРТИ
Асиломарский конференц-центр, расположенный на живописном побережье Калифорнии севернее Кармела и Биг-Сара, окружён секвойями и соснами. Здания построены из грубого камня по образцу ранних американских церквей. В этих стенах проходили многочисленные академические конференции по самым разным проблемам — от гражданских прав до свободы печати.
Холодным ясным днём 24 февраля 1975 г. здесь собрались 140 известнейших специалистов по молекулярной биологии и генетике, чтобы обсудить, вправе ли наука заниматься экспериментами, которые могут привести к появлению на Земле новых форм жизни. Конференция была созвана по инициативе Поля Берга — генетика из Станфордского университета, спортсмена и крупного учёного, лауреата премии Ласкера (за работы в области генной (генетической) инженерии Берг в 1980 г. был удостоен Нобелевской премии). На ней присутствовали и три лауреата Нобелевской премии: Джеймс Д. Уотсон, рассеянный, вечно лохматый директор биологической лаборатории в Колд-Спринг Харборе (Нью-Йорк), который вместе с Фрэнсисом Криком расшифровал в 1953 г. строение молекулы ДНК; Джошуа Ледерберг, крепко скроенный, лысеющий генетик из Станфордского университета, труды которого пролили свет на природу генетических мутаций, и Дэвид Балтимор, молодой, бородатый микробиолог из Массачусетского технологического института, занимающийся исследованием репродукции отдельных генов. Балтимор был вице-председателем конференции.
Помимо Нобелевских лауреатов здесь присутствовали и такие знаменитые учёные, как Сидней Бреннер, член Совета по медицинским исследованиям Великобритании; Дэвид Ботстейн из биологической ла-боратории в Колд-Спринг Харборе; Эндрю Лыоис из Национального института здравоохранения в Бетесде (штат Мэриленд); советский ученый академик В. А. Энгельгардт, а также юристы: Дэниел Сингер из Института общественных, этических и биологических наук в Гастингсе-на-Гудзоне (Нью-Йорк) и Роджер Дворкин из Университета штата Индиана. За работой конференции наблюдали представители Национального института здравоохранения — крупнейшего государственного исследовательского центра и представители прессы.
Берг созвал конференцию, чтобы обсудить открытие, сделанное им совместно с коллегами два года назад: они научились брать цепочки генов от одного организма, скажем мыши, и комбинировать их с генами другого организма, например лягушки. Опыты открывали перед наукой захватывающие дух перспективы: ученые получали возможность творить организмы, каких на Земле не бывало, и радикально изменять свойства существующих организмов. Это открытие, получившее название генной инженерии, можно было использовать двояко: с благими намерениями, например, изменять те или иные свойства человека ради продления его жизни, и во зло — например, для создания особо вирулентных штаммов микроорганизмов в качестве биологического оружия. Кроме того, не исключено, что новые штаммы, казалось бы, безвредных, используемых в экспериментах культур могут по чистой случайности вырваться за стены лабораторий и привести к биологической катастрофе в глобальном масштабе и к неисчислимым жертвам.
От гороха к ДНК
Фантастические результаты, к которым привели открытия Берга и его коллег, увенчали более чем столетний путь исследований генетических механизмов, определяющих способность живых организмов наследовать жизненно важные химические процессы, контролирующие их строение и функции. Современная генетика как наука родилась в середине прошлого столетия в саду монастыря св. Фомы в Брюнне (Австрия) (ныне словацкий город Брно). Именно там Грегор Мендель, ставший монахом-августинцем, чтобы избавиться от жестокой нищеты своей юности, занимался выращиванием тысяч растений гороха.
Мендель всегда проявлял живой интерес к науке и с 1851 по 1853 г. с разрешения монастырских властей посещал занятия в Венском университете, где изучал физику, математику и физиологию растений. Вдохновленный сведениями, которые он получил от великих селекционеров-растениеводов, в частности от Карла Фридриха Гартнера, Мендель вернулся в монастырь и приступил к тщательному изучению природы наследуемых признаков живых организмов. Выращивая различные сорта гороха (которые он называл своими "детками"), он опылял (скрещивал) их вручную, учитывая высоту и цвет, затем сводил данные в таблицу и обрабатывал результаты, пользуясь своими свежими познаниями в математике, для анализа закономерностей наследования специфических, хорошо заметных признаков.
В 1865 г. Мендель выступил перед Обществом естествоиспытателей Брюнна с двумя лекциями, в которых подвёл итог своих восьмилетних трудов. Но хотя в аудитории присутствовали местные ученые знаменитости, никто из них не понял математических объяснений, которыми Мендель иллюстрировал принципы распределения по высоте, цвету и другим характерным признакам растения у полученных им гибридов. Не поняли они и его оригинального учения о наследственности. После окончания лекций не было ни вопросов, ни обсуждения результатов. Но справедливость требует отметить, что не только местные светила не сумели постичь громадное значение его открытия. Мендель опубликовал результаты своих опытов в "Известиях Брюннского общества естествоиспытателей" за 1866 г., и в течение трёх с половиной десятилетий к ним было проявлено полное пренебрежение со стороны других исследователей, которые бились над разгадкой тайны наследственности, уже успешно разрешённой Менделем. А Мендель с помощью своих гороховых гибридов открыл, что такие характерные признаки организмов, как окраска цветов гороха или цвет глаз человека, проявляются благодаря действию определенных элементарных структур внутри клеток. Эти структуры впоследствии получили название генов (от греческого слова, означающего "воспроизведение").
Мендель утверждал, что живые организмы наследуют гены от своих родителей, и в зависимости от того, какие гены получены, некие "формирующие элементы" внутри клеток потомства обусловливают внешнее проявление этих генов в виде характерных признаков, например цвета горошин или цвета волос. Унаследованные от родителей гены, доказывал Мендель, несут всю информацию, необходимую для развития характерных признаков этих живых организмов.
После смерти Менделя в 1884 г. осталось всего несколько писем и одна публикация в журнале заштатного провинциального общества любителей природы.
И только в 1900 г. три исследователя — Карл Корренс из Тюбингенского университета (Германия), Эрих фон Чермак-Сейсенэгг из Колледжа агрономии и лесоводства в Вене и Гуго де Фриз из Амстердамского университета — одновременно и независимо друг от друга открыли тот самый закон наследования, который Мендель описал 35 годами ранее. Все трое пришли к выводу, как выразился Корренс, "что аббат Грегор Мендель… уже в 60-х годах не только получил те же результаты, но и дал им точно такое же объяснение". Наконец-то Менделю воздали по заслугам за его открытия и родилась новая наука — генетика.
После вторичного открытия трудов Менделя события стали развиваться быстрее. Учёные уже знали, что гены находятся в клеточном ядре, в структурах, называемых хромосомами ("окрашенные тельца"), ибо хромосомы распределялись в потомстве точно таким же образом, как, согласно математическим выкладкам Менделя, распределялись гены. Однако самому Менделю ещё ничего не было известно о хромосомах — их описали только в конце 80-х годов, незадолго до его смерти. Хромосомная теория наследственности была опубликована в 1903 г. У. С. Саттоном, выпускником Колумбийского университета. К этому времени учёные всего мира полагали, что гены состоят из белков. Их представляли себе в виде белковых шариков, соединённых в длинные нити и свёрнутых внутри клеточного ядра. К концу первого десятилетия текущего века учёные-генетики полагали, что загадка химической природы наследственности решена и остается выяснить только некоторые недостающие подробности.
Однако в 1944 г. Освальд Эвери и его коллеги по Рокфеллеровскому институту в Нью-Йорке обнаружили, что гены состоят не из белка, а из ДНК. Сама ДНК была обнаружена в 1869 г. немецким химиком Фридрихом Мишером, но считалось, что по сравнению с белками её роль незначительна. Эксперименты Эвери с бактериями пневмонии показали, что новые признаки могут быть переданы от бактерий пневмонии одного типа бактериям другого типа в процессе, называемом трансформацией. Если бы гены состояли из белка, то признаки, контролируемые данными генами, могли бы быть переданы при обмене белками между бактериями. Но Эвери доказал, что признаки не передаются с белком; это обеспечивает только передача ДНК. По свидетельству Эрнеста Борека, химика из Нью-Йоркского университета, "Эвери не утверждал этого, но фактически он выделил генетический материал клетки. Так сошлись два независимых пути исследований: один из них начался с открытия Мишером ДНК, другой — с дедукции законов наследственности, выведенных Менделем".
Эвери был застенчивым и вместе с тем увлечённым человеком; он был настолько поглощён своими исследованиями в Рокфеллеровском институте, что поселился напротив, чтобы жить поближе к месту работы. Его преданность науке оправдала себя, и учёные, пытавшиеся разгадать, каким образом гены обусловливают появление унаследованных признаков, получили важный ключ к решению. Как только выяснилась химическая природа ДНК, она стала доступна обсуждению, и это могло пролить свет на всё, чем управляет ДНК, — речь идёт не только о цвете глаз, но о самой жизни, старении и смерти.
Открытие Эвери, заключавшееся в том, что гены представляют собой ДНК, вызвало огромный интерес во всем мире, и учёные наперебой принялись изучать ДНК, пытаясь открыть секрет её действия. Возглавили эту гонку две группы: Лайнуса Полинга с коллегами в США и Джеймса Уотсона и Фрэнсиса Крика в Англии.
Американец Уотсон, получивший степень доктора биохимии в Университете штата Индиана, и англичанин Крик, выпускник английского высшего учебного заведения, комбинируя данные опытов, проведённых другими учеными, сформулировали гипотезу о структуре ДНК. Их статья, опубликованная в 1953 г. в английском журнале Nature, начиналась таким скромным введением: "Мы хотели бы предложить структуру… ДНК. Эта структура имеет некоторые новые свойства, которые представляют значительный интерес для биологов". Структурная модель Уотсона и Крика показывала, каким образом состоящие из ДНК гены влияют на возникновение характерных признаков в клетке посредством производимой ими РНК. Действуя в качестве "гонца" от ДНК, РНК переносит в клетку "приказы" по производству разнородных белков, входящих в структуру клетки и определяющих её метаболизм. Это описание функции клетки получило название "центральной догмы", так как современные учёные превратили её почти в символ веры: ДНК создает РНК, которая создаёт белки — основу существования клетки.
Но если ДНК — ключ к жизни клетки, она может быть и ключом к её смерти. Могут существовать "гены смерти", управляющие синтезом белков, которые понемногу вызывают старение и убивают клетки. А возможно, по мере старения клеток функция ДНК становится менее выраженной, и это постепенно приводит к прекращению функционирования клетки, вызывая симптомы, которые мы называем старением. Не удивительно, что многие учёные после Уотсона и Крика изучали ДНК, стремясь научиться управлять характерными свойствами клеток, в том числе влиять на процесс их старения.
Наиболее успешные методы изучения ДНК разработаны на бактериях и вирусах, так как они довольно просто устроены и вместе с тем несут те же характерные признаки, что и остальные живые организмы: у них есть ДНК, и они синтезируют РНК и белки.
Вирусы проникают в другие живые организмы — в бактерии, растения или животные, — вторгаясь в их клетки, "грабя" их и заставляя производить новые вирусы; таков их образ жизни. Поэтому изучение вирусов может дать нам информацию о том, как ДНК управляет синтезом РНК и белков, в том числе и тех белков, которые могут стать причиной старения.
Экспериментальная генная инженерия
Поль Берг, как и многие другие учёные, занимался изучением ДНК на бактериях. В состав многих бактерий входят кольцеобразные молекулы ДНК, называемые плазмидами, и в 1973 г. Берг начал эксперименты с особой плазмидой, имеющей шифр pSC101. Плазмиды обеспечивают устойчивость бактерий к антибиотикам, а эта плазмида (из бактерии Escherichia coli, сокращенно — E. coli) повышала устойчивость бактерии к антибиотику тетрациклину.
Вначале Берг выделил из бактерий некоторые рестрикционные ферменты (рестриктазы), играющие роль внутренней полиции, которая постоянно "рыщет" в поисках чужеродной ДНК, например входящей в состав многих вирусов. Когда в бактериальную клетку внедряется чужеродная ДНК, эти ферменты мгновенно обнаруживают агрессора и разрушают его, при этом чужая ДНК становится пищей для клетки, в которую она вторглась. Таким образом клетки защищаются от вирусов.
Выделив нужные ферменты в чистом виде, Берг поместил их в пробирку вместе с плазмидами. Рестрикционные ферменты незамедлительно напали на кольцевые плазмиды. Результатом этой атаки на ДНК явилась пробирка, полная длинных, нитевидных фрагментов плазмидной ДНК с "липкими" концами. Вообще-то говоря, "липнут" эти концы избирательно: они слипаются только с другими кусками ДНК, которые появились в результате действия того же рестрикционного фермента.
Берг решил использовать эту избирательную "липучесть", чтобы включать в плазмиды дополнительные гены. В своих опытах он использовал гены канцерогенного вируса, который вызывает опухоли у обезьян. Берг изолировал ДНК вируса рака и обработал её тем же рестрикционным ферментом, которым он пользовался для получения плазмид с липкими концами. Таким образом, он получил некоторое количество фрагментов вируса рака, каждый из которых содержал часть генов вируса, и все они обладали "липкими" концами. После этого исследователь добавил эти фрагменты к плазмидам — "липкие" концы тут же соединились с плазмидами. Теперь каждая кольцевая плазмида включала в себя фрагмент вируса рака, то есть часть его генов.
Затем этим видоизмененным плазмидам с их "нагрузкой" в виде вируса рака дали возможность проникнуть в нетронутые клетки бактерии E. coli. Бергу удалось показать, что после внедрения плазмид в клетку гены вируса рака могут начать синтезировать белки вируса при условии, что они попали в бактению неповрежденными и способными функционировать. Иными словами, монтируя гены, учёный сотворил гибрид вируса рака и бактерии. Методика, по словам Берга, "очень простая и вполне осуществимая даже в школьных опытах".
Вслед за Бергом другие учёные использовали плазмиды для введения ДНК мыши или лягушки в клетки бактерий. При дальнейшем совершенствовании этой методики, быть может, удастся непосредственно комбинировать растения с животными в существа, которых нет в природе, — как позже пошутил один из участников Асиломарской конференции, "скрестить апельсин с уткой мандаринкой".
Но всё это грозит серьёзными опасностями. Прежде всего, излюбленные экспериментаторами бактерии, в которые вводили новые гены, — это E. coli, естественный и постоянный обитатель кишечника человека. Поэтому, если бы организмы, полученные в лаборатории Берга путем комбинации E. coli с вирусами рака, случайно оказались на свободе, то гибридные бактерии отправились бы прямехонько в кишечный тракт людей. А это могло бы привести к эпидемии рака кишечника среди населения.
Как только Берг опубликовал в 1974 г. результаты своих опытов по генной инженерии, со всех концов Земли к нему посыпались просьбы прислать рестрикционные ферменты, причём учёные делились своими планами их применения. Для генетиков возможность разрезать ДНК на кусочки и вводить их в структуру чужих клеток открывала невиданные ранее возможности изучения самых сокровенных процессов, протекающих в клетке. Им казалось, что с генной инженерией они вступают в эру точного изучения функций отдельных генов.
Но далеко не все эксперименты с рестрикционными ферментами были глубоко продуманы. Некоторые описания, полученные Бергом, касались опытов, авторы которых собирались просто "нашинковать" как попало всю ДНК клетки, например клетки из раковой опухоли, а затем наудачу вводить эти обломки в E. coli Это таило в себе опасные возможности. Берг боялся, что некоторые гены, использованные такими исследователями, непременно окажутся опасными для человека и в случае распространения бактерий за пределы лаборатории могут нанести непредсказуемый вред. Кроме того, по мнению Берга, некоторые эксперименты были просто недостаточно продуманы. "Я спрашивал у экспериментаторов, что они собираются делать с ними (рестрикционными ферментами), — говорил он. — Некоторые из них планировали чудовищные эксперименты, совершенно не задумываясь о последствиях".
Берга беспокоило также, что эксперименты могут проводиться в ненадёжных лабораториях. Даже при наличии самого современного оборудования, в стерилизованных, герметичных лабораториях со специальной системой вентиляции, двойными дверями и боксами, сконструированными так, чтобы ни один микроб не улизнул на свободу, за последние три десятка лет насчитывалось свыше 5000 "чрезвычайных происшествий" с опасными организмами или ядовитыми веществами. Некоторые из них не принесли вреда, но в некоторых случаях наблюдалась утечка нервно-паралитического газа, в результате чего в штате Юта, например, погибли сотни овец. Известны случаи, когда сами исследователи заболевали раком, а в 1974 г. двое учёных, работавших в лаборатории Лондонского университета под защитой стерилизованного оборудования стоимостью более чем 40 000 долларов, заразились оспой при работе с вирусом и погибли.
Один из экспериментов, который описывали корреспонденты Берга, состоял в том, чтобы попытаться ввести в структуру стафилококковых бактерий (тех самых, которые вызывают у людей множество заболеваний, в частности острые пищевые отравления, фурункулез, инфекционный остеомиелит и заражение крови) ген бактерии, устойчивой к антибиотикам. Проверить успешность эксперимента, по мнению его приверженцев, было бы не очень сложно: после введения новых генов в структуру стафилококков на колонию гибридных бактерий достаточно подействовать антибиотиком. Если он окажется неэффективным, опыт удался. Если же антибиотик убьет стафилококки, значит, никакой гибридизации не произошло. Но ведь в результате "удачного" эксперимента появится новый штамм сверхвирулентных, опаснейших стафилококков, способных заражать человека и в то же время устойчивых к лечению антибиотиками. Случись им выйти из-под контроля и заразить кого-нибудь из работников лаборатории, приостановить распространение инфекции можно будет только одним способом — полной и немедленной изоляцией больного. Можно себе вообразить эпидемию пострашнее бубонной чумы, которая пронеслась по Европе в XV в. и унесла половину населения. Именно такая кошмарная перспектива и заставила Берга созвать конференцию в Асиломаре.
Прения под секвойями
Конференция отнюдь не ставила своей целью прекратить исследования по трансплантации генов. Скорее, она была созвана для того, чтобы учёные в узком кругу, без постороннего вмешательства, смогли разработать собственные критерии безопасности. Но, как это бывает в тех случаях, когда для многих группировок требуется единое руководство к действию, прийти к общему мнению оказалось нелегко.
Почти с самого начала участники разделились на две фракции. Одна из них, возглавляемая лауреатом Нобелевской премии Джеймсом Уотсоном, придерживалась мнения, что невозможно наметить способы, которые позволили бы заранее определить, какие эксперименты окажутся опасными, а какие — нет. Уотсон страстно настаивал на том, что факторы риска не поддаются определению и что подобные попытки — посягательства на свободу научного поиска. "Меня хотят лишить возможности работать из-за чего-то, что невозможно даже измерить", — бушевал он. На что Дэвид Ботстейн возразил: "Мне бы хотелось привести один очень простой аргумент в пользу общепринятых правил: я не всезнайка. Мои эксперименты чаще всего не удаются, тогда я учусь на ошибках и стараюсь их исправить".
Ботстейн принадлежал ко второй группировке, возглавляемой Полем Бергом, которая требовала точных стандартов для проводимых экспериментов, чтобы обезопасить себя от всяких случайностей. Сознавая, что степень риска трудно заранее предугадать, — в самом деле, кто может предсказать, в каком из тысячи экспериментов окажется смертоносная ошибка? — Берг ратовал за то, чтобы классифицировать эксперименты по степени возможной опасности, а затем добиться от генетиков добровольного согласия не проводить эксперименты, которые будут признаны особо опасными.
В течение четырёх дней кряду, почти по двенадцать часов в день, кипели прения, в которых одна группа ученых требовала введения ограничений, а другая защищала независимость научных исследований. Д-р Ханс Молё, генетик из Копенгагенского университета, утверждал, что случайности предвидеть невозможно и что "надеяться, будто мы в состоянии выработать хотя бы самые простые общие правила, не что иное, как самообман". Д-р Сэмбрук из Колд-Спринг Харбора пошел еще далее: по его словам, "абсолютной изоляции инфекций не существует, любая изоляция ненадежна".
Д-р Сидней Бреннер, один из организаторов конференции, провел дискуссию на тему о возможных способах создания для лабораторных целей бактерий, не способных существовать вне лабораторных условии.
Намечались и отвергались проекты, и стало казаться, что дебаты ни к чему не приведут. Учёные так и не сошлись во мнениях. И тогда Берг обратился ко всем участникам конференции: "Если кто-либо думает, что наши рекомендации служат нашим собственным интересам, придётся пойти на риск и ввести принудительные стандарты. Мы должны начать с самых жестоких требований, а уже затем смягчить их. Нельзя допустить, чтобы 150 учёных провели четыре дня в Асиломаре, все были согласны с тем, что существует опасность, и до сих пор не выдвинули ни единого конструктивного предложения. Это может означать только одно: что мы передаем свои полномочия правительству".
Согласие было достигнуто только после того, как в дело вмешались юристы. Дэниел Сингер из Института общественных, этических и биологических наук разъяснил учёным, что проблема выработки правил относится к области этики и что "нет никаких оснований для того, чтобы уклоняться от решения этой проблемы или считать её недостойной внимания". Другие юристы, в частности Александр Кэпрон из Пенсильванского университета и Р. Дворкин из Индианского университета, указали на то, что каждая ошибка учёных может обойтись в миллионы долларов, "если будут предъявлены судебные иски по возмещению ущерба". Юристы убеждали аудиторию, что учёные обязаны выработать правила невзирая на то, что степень риска оценить очень трудно: ведь за все несчастные случаи, которые могут произойти, ответственность несут исследователи. Дворкин подытожил: "Группы экспертов, не пользующиеся своим правом на саморегуляцию, открывают путь лавине несчастий". Поняв, что каждому исследователю грозит личная и административная ответственность за любой ущерб, нанесенный в результате несчастного случая, ученые наконец-то всерьёз занялись выработкой правил.
В конце концов, под угрозой миллионных исков по возмещению ущерба, сотрясавшей воздух Асиломара, они решили подразделить эксперименты на четыре категории в зависимости от степени риска: минимальный, малый, умеренный и высокий риск. Генетики изложили основные правила проведения экспериментов каждой категории и наложили ограничения на эксперименты с высокой степенью риска, которые могут породить опасные гибриды. Они также потребовали, вслед за Бреннером, создания в экспериментальных целях новых штаммов бактерий, которые не могли бы существовать вне пределов лаборатории. В опубликованном воззвании они также призывали к величайшей осторожности в любых экспериментах, связанных с генной инженерией.
После Асиломара были созваны ещё несколько конференций под эгидой Национального института здравоохранения, главного организатора генетических исследований. На встрече в декабре 1975 г. в Ла-Хойе (Калифорния) Институт разрешил эксперименты по генной инженерии только при соблюдении некоторых специфических условий. Одним из них было использование в экспериментах с высокой степенью риска особых штаммов E. coli (обозначенных ЕК2 и ЕКЗ), у которых в миллионы раз меньше шансов выжить вне лаборатории, чем у обычных E. coli (ЕК1). Как выразился Рой Кёртис III, микробиолог из Университета штата Алабама (один из тех, кто создал ЕК2): "В нынешних условиях быть осторожным — значит быть аккуратным". С тех пор наука быстро прогрессировала, и теперь существует уже несколько надёжных штаммов ЕК2, которые, судя по всему, удовлетворяют критериям безопасности в экспериментах по генной инженерии, связанных с высокой степенью риска.
23 июня 1976 г. Национальный институт здравоохранения выпустил свод правил по регулированию всех генетических исследований подобного рода. В настоящее время его сотрудники занимаются изучением возможного влияния таких исследований на окружающую среду, исходя из закона об охране среды. В правилах перечислены шесть категорий опытов с ДНК, которые признаны слишком опасными даже при условии соблюдения высочайшей осторожности. Однако единственным наказанием за нарушение этих правил является лишение субсидий, выдаваемых Институтом; в правилах ничего не говорится о мерах борьбы в случае стихийных бедствий или о предосторожностях, связанных с охраной гибридных бактерий от похищения преступниками или сумасшедшими. Вообще же правила обратили на себя такое внимание, что, например, городские власти Кенмбриджа (штат Массачусетс) потребовали от руководства Гарвардского университета отложить все эксперименты в этой области во избежание какой-нибудь напасти, грозящей населению города. Иными словами, джинн, выпущенный из бутылки, все еще гуляет на свободе.
Картирование генов
Биофизик Роберт Синсхеймер, один из первых исследователей генетики вирусов в Калифорнийском технологическом институте в Пасадене, нарисовал оптимистическую картину нашей всё возрастающей власти над тайнами генетики:
"Как вы намерены изменить ту схему, по которой природа создала человека? Желаете ли вы повлиять на пол ваших детей? Ваше желание исполнится. Хотите, чтобы ваш сын был ростом 190 см? А может, 210 см? 250 см? Что вам мешает жить: аллергия, тучность, боли в суставах? Справиться с этим пара пустяков. Генная терапия победит рак, диабет, фенилкетонурию (нарушение обмена веществ). Достаточно ввести соответствующую ДНК в соответствующих дозах. Вирусные и бактериальные инфекции будут не страшны. Даже вековечные законы роста, созревания и старения подчинятся нашей воле. Продолжительность жизни безгранична. Сколько вы хотели бы прожить?.. Эти проекты кажутся вам бредом, вызванным ЛСД, или отражением в кривом зеркале? Но ничто не может сравниться с тем, что мы теперь умеем".
Если старение есть не что иное, как результат регуляторного действия специфических генов (так полагает Леонард Хейфлик), то можно будет добиться подавления этих генов. Если же старение является результатом разрушения генов, то можно будет пересаживать людям новые гены, которые исправят повреждения и вернут стареющим мужчинам и женщинам ту жизненную силу, которой они обладали в молодости. Генетические болезни, такие, как, например, гемофилия или серповидноклеточная анемия, тоже с течением времени будут поддаваться лечению — достаточно ввести младенцам сразу же после рождения специфические гены. Возможности изменения жизни людей будут мало чем отличаться от безудержной фантазии генетиков.
Но, прежде чем приступить к лечению болезней и продлению жизни с помощью генной терапии, мы должны выяснить местоположение и функции каждого из 30 000 генов, расположенных вдоль двойной спирали ДНК, которая находится в каждой клетке человека. Для этого нам понадобится разметить, как на карте, точную локализацию каждого гена на всем протяжении хромосомы. Такая законченная карта снабдит генетиков каталогом генов, которые могут использоваться в генной инженерии, т. е. для устранения наследственных болезней и продления жизни.
Только в 1970 г. генетики научились точно различать отдельные хромосомы внутри клеток человека. До этого хромосомы различали только по величине, а это очень ненадёжный способ, ибо размеры хромосом часто непостоянны и в каждой пробе сильно варьируют. В 1970 г. Турбьёрн Касперссон из Стокгольмского университета во время экспериментов по окрашиванию хромосом зафиксировал явление "полосатости" (бэндинга): в ультрафиолетовых лучах хромосомы было легко отличить друг от друга по этим характерным "полосам". В 1971 г. на Парижской конференции по идентификации хромосом были стандартизованы методы их окраски и каталогизации. Новый метод определения хромосом, будь то у растения, животного или человека, приблизил учёных к успешному картированию отдельных генов в хромосомном наборе.
Методика Касперссона в сочетании с методикой французского исследователя Г. Барски (Парижский институт Гюстава Русси) обеспечила учёным точность картирования генов. В начале 60-х годов Барски обнаружил, что две клетки можно слить в одну гибридную — например, человеческую клетку можно соединить с клеткой мыши и таким образом получить мышино-человеческий гибрид, способный жить и размножаться. Разумеется, гибридные клетки не в состоянии сложиться в целый организм, но их можно заставить жить в искусственной питательной среде в лабораторных условиях.
До 1971 г. явление гибридизации клеток не привлекало к себе внимания в утилитарных целях. К этому времени Мэри Вейсс и Говард Грин, работавшие в Центре молекулярной генетики в Жифсюр-Иветт (Франция), получили гибриды клеток человека и мыши и дали им возможность размножаться в течение нескольких поколений, пока они почти полностью не утратили человеческие хромосомы (в мышино-человеческих гибридах обычно теряются именно хромосомы человека). Затем, выращивая гибридные клетки в питательной среде, в которой чисто мышиные клетки неспособны свободно развиваться, они обнаружили, что некоторые гибриды производят новый белок (в результате деятельности генов), так как они оказались способными расти в этой питательной среде. Из этого учёные сделали вывод, что новый продукт (белок) есть результат деятельности хромосом человека в гибридных клетках. Используя только что открытую методику Касперссона, они окрасили гибридные хромосомы красителем, вызывающим бэндинг. В ультрафиолетовом свете полоски ярко проступили, и одна-единственная оставшаяся в клетках хромосома человека была определена как источник того белка, который создавали гибридные клетки.
Локализация первого одиночного гена в хромосоме человека, осуществленная Мэри Вейсс и Говардом Грином с помощью техники окрашивания хромосом в 1971 г., положила начало установлению места других генов: к 1973 г. стали известны местоположения и функции еще 28 генов. К середине 1976 г. было картировано уже 200 генов. По свидетельству д-ра Фрэнка Рэддла из Йельского университета, одного из лидеров картирования, на карте появляются по три новых гена в месяц. Приведём высказывание Поля Муди из Университета штата Вермонт относительно перспектив картирования генов: "Бесспорно, постепенно мы узнаем, какая из хромосом содержит ген, управляющий специфическим ферментом, — это только вопрос времени. Одновременно будет увеличиваться и число известных генов, размещающихся в отдельных хромосомах".
Пересадка генов
Для того чтобы воспользоваться результатами картирования генов применительно к генной инженерии, необходимо найти способ включения новых генов в структуру клетки с нарушенными функциями. Удачные "пересадки генов" уже были осуществлены в первых экспериментах по гибридизации в начале 60-х годов, когда соединялись две разнородные клетки, и в более тонких экспериментах Поля Берга по генной инженерии с использованием рестрикционных ферментов и плазмид. Описан даже один случай пересадки генов у людей.
В 1970 г. внимание Стэнфилда Роджерса, врача-генетика из Ок-Риджской национальной лаборатории (штат Теннесси), привлек отчёт о редком случае болезни, называемой аргининемия, у двух девочек, семи и двух лет. Аргининемия — наследуемая неспособность синтезировать фермент аргиназу из-за дефекта в ДНК. Без аргиназы организм не в состоянии расщеплять аминокислоты, накапливающиеся в процессе нормального обмена веществ. Болезнь прогрессирует медленно, по мере накопления продуктов обмена. Она проявляется в виде нарастающих повреждений почек, мозга и других тканей.
Роджерс, много лет работавший с вирусами, знал, что если бы удалось найти подходящий вирус, который, будучи безопасным для человека, мог бы заставить клетки производить аргиназу, то инъекция такого вируса могла бы в свою очередь заставить клетки организма обеих девочек вырабатывать собственную аргиназу. Более того, Роджерсу был известен такой вирус. Вирус, носящий название вируса папилломы Шоупа (по имени Ричарда Шоупа из Рокфеллеровского института в Нью-Йорке, который открыл этот вирус в 30-х годах), представляет собой набор генов в плотной защитной оболочке из белка, по величине в тысячу раз меньше клетки человека. В начале 60-х годов Роджерс обнаружил, что примерно у половины исследователей, работавших с вирусом Шоупа, отмечался повышенный уровень аргиназы — видимо, из-за случайного попадания вируса в клетки.
Благодаря стараниям Рождерса больным девочкам был привит вирус Шоупа, и у них постоянно брали кровь на анализ, чтобы отыскать следы аргиназы. На протяжении нескольких месяцев картина не менялась. Однако медленное накопление ядовитых аминокислот продолжалось, вследствие чего клетки продолжали погибать. Но вот после месяцев ожидания у обеих девочек стала вырабатываться аргиназа. К сожалению, лечение вирусом Шоупа оказалось недолговечным. И всё-таки, хотя вред, нанесённый организму больных девочек накоплением шлаков, оказался слишком велик, чтобы его можно было нейтрализовать введением чужеродных генов, возможность такого лечения подтвердилась.
С тех пор люди больше не подвергались лечению с помощью "пересадки генов", однако многие учёные, помимо Роджерса, добились существенных успехов в отработке методики, которая со временем позволит производить подобные операции. Трое исследователей из Национального института здравоохранения в Бетесде (штат Мэриленд) — Карл Мерилл, Марк Грир и Джон Петриччоне — проводили опыты с вирусами, намереваясь переносить ДНК в клетки, содержащиеся в искусственной среде и взятые у лиц, страдающих галактоземией. Это заболевание представляет собой наследственную неспособность синтезировать галактозу — фермент, необходимый для расщепления сахара, находящегося в молоке и маточных продуктах. В прошлом больные галактоземией вынуждены были ограничивать себя в потреблении молока и молочных продуктов, однако это не спасало их от заболевания печени и катаракты в результате накопления галактозы в тканях.
Вирусы выполняли роль миниатюрных шприцев, с помощью которых гены, взятые у способных использовать галактозу бактерий, вводились в культуру клеток больных галактоземией. Как оказалось, при добавлении галактозы в питательную среду клетки не только не погибали от накопления галактозы, но и процветали и даже сумели передать своему потомству способность синтезировать галактозу. Это был, по словам исследователей, "первый шаг к излечению болезней, вызванных генетическими ошибками". Подобные опыты проводятся и другими учеными, и может статься, что пересадка генов со временем окажется эффективным средством борьбы более чем с 2000 наследственных болезней, от которых страдает человечество.
Как только методика пересадки генов будет полностью отработана, её можно будет использовать для борьбы со многими возрастными изменениями в функционировании отдельных клеток. И если существуют "гены смерти", которые управляют процессами дегенерации клеток, можно будет вводить в организм новые гены — синтетические или взятые у молодых организмов (людей, животных, бактерий), которые "выключат" гены смерти. Если же старение — результат нарушения работы отдельных генов (а не активная деятельность "генов смерти"), то с помощью пересадки генов можно будет заменить или исправить эти плохо работающие гены. Возможно, пользуясь пересадкой генов, учёные смогут даже ввести развивающемуся в утробе матери плоду новую генетическую информацию, которая истребит "гены смерти" еще до рождения ребенка или предотвратит разрушение генов с возрастом.
Что и говорить, перспективы захватывающие, но следует помнить предостережение Р. Родни Хауэлла, генетика из Техасского университета: "Прогресс в лечении наследственных заболеваний будет продолжаться, но только постепенно. Каждая болезнь, безусловно, потребует отдельного решения задачи. Мне кажется маловероятной возможность одновременного революционного "прорыва" на всех направлениях".
Корана, Ниренберг и синтетические гены
Если можно будет пересаживать гены человеку, то не исключена возможность введения и искусственных генов для лечения наследственных болезней и предупреждения старения. Искусственные, синтетические гены, некогда существовавшие только в воображении писателей-фантастов, уже созданы. Первый такой ген создал Хар Гобинд Корана, американский генетик родом из Индии, работавший в Университете штата Висконсин и в Массачусетском технологическом институте. За своЁ открытие 46-летний Корана в 1968 г. разделил Нобелевскую премию с Маршаллом У. Ниренбергом (Национальный институт кардиологии в Бетесде, штат Мэриленд). Открытие, которое дало ясную картину процесса синтеза белка в клетке и привело Корану к синтезу гена, принадлежит Ниренбергу и было сделано им в 1961 г.
...
Не только наша планета и наши общественные традиции изменятся со значительным удлинением жизни людей: каждый из нас, несомненно, должен будет глубоко перемениться и пересмотреть всю систему ценностей. Многие философы и психологи писали о том, что сам факт смерти — сознание неизбежности конца — очень сильно влияет на многие наши личные оценки и наше поведение. Существует теория, согласно которой немалая доля творческого темперамента и честолюбия художников, изобретателей, бунтарей, политических деятелей объясняется сильнейшим дискомфортом от сознания собственной смертности. Исследования психолога Лисла Гудмена из колледжа штата Нью-Джерси показали, что многих творческих лиц подхлёстывал страх перед неполнотой их жизни, перед тем, что она будет внезапно оборвана смертью. Но что случится с этим движущим порывом, если человек будет знать, что смерть грозит ему только от несчастного случая, что он может располагать полуторавековой жизнью? Если смерть наполняет жизнь смыслом, то сознание отсутствия смерти точно так же окажет влияние на человеческую психику. Если на обещании бессмертия, как на краеугольном камне, зиждется религия, то как повлияет новое долгожительство на веру человека в творца, на существование религиозных институтов, на личную этику и поведение? Одно можно сказать с уверенностью: мы не знаем, какое влияние окажет продление жизни на глубинные области человеческой психики. Никто не в состоянии себе представить, как человек, которому предстоит прожить 150 лет или ещё дольше, будет смотреть на мир.
...
Освобождение от смерти
Больше всего споров ведётся вокруг того, каким образом отразится на психике человека полноценная и долгая жизнь, несущая с собой редкостный дар: дар времени. Многие утописты верят, что избыток времени позволит людям развивать и до тонкости совершенствовать свои таланты, заниматься литературой и искусством, совершенствовать человеческий род, пока он не уподобится богам. С этой непривычной новой свободой в перспективе мы стоим на пороге невиданного и неслыханного расцвета всех человеческих способностей, приносящего нам в дар не одну жизнь, а много жизней.
За долгую жизнь, полную юношеской энергии, можно переменить несколько профессий, изучить самые разнообразные науки, достигнуть мастерства во всех искусствах, узнать и полюбить множество людей. Можно затратить много лет на учебу, чтобы стать величайшим специалистом, которого не "поджимает" время и которому по плечу решить прежде неразрешимые проблемы: например, как покончить с болезнями, насилием, загрязнением окружающей среды. Человек будет в состоянии совершать длящиеся многими десятилетиями космические перелёты и полнее исследовать глубины Вселенной.
Но даже те, кто не слишком пристально изучал человеческие особенности, отдают себе отчёт, что это не единственные открытые нам возможности выбора, ибо каждой высоте, которой достиг человек, соответствует пропасть, куда он пал.
Как говорит уже не раз упоминавшийся нами Синсхеймер, само исследование тоже надо подвергать исследованию. Овладение атомной энергией поставило человечество на волосок от самоистребления. Исследование рекомбинантных ДНК таит в себе ещё большую опасность, потому что они, в отличие от радиоактивных осадков, способны к самовоспроизводству, искусственные живые организмы по природе своей способны к размножению. "Может, нам и повезёт, — говорит Синсхеймер. — Может, природа ещё раз спасет нас от нашего невежества. Но лично я не хотел бы оставлять решение столь важной проблемы на волю случая".
...
Трансгуманизм (от лат. trans — предлог, обозначающий переход, изменение и homo — «человек») — общественный строй, политическая позиция и философская концепция, продвигающие использование достижений науки и технологии для улучшения умственных и физических возможностей человека с целью устранения тех аспектов человеческого существования, которые трансгуманисты считают нежелательными — страданий, болезней, старения и смерти. Трансгуманисты изучают возможности и последствия применения таких технологий, опасности и преимущества их использования, рассматривая в том числе идею конвергенции биологических, информационных, познавательных и нанотехнологий.
Идеи в форме желаний или мнений, которые сегодня могут быть истолкованы как трансгуманистические, присутствовали в человеческой культуре на протяжении всей истории.
Впервые слово «transhumane» использовал Данте Алигьери в «Божественной комедии» (1312), но в современном смысле это слово встречается впервые только у биолога-эволюциониста Джулиана Хаксли в его работе «Религия без откровения» (1927). В духе своей эпохи, ознаменованной, в частности, проникновением методов естественных наук в биологию, становлением генетики как самостоятельного научного направления и началом освобождения повседневной жизни людей от влияния религии, Хаксли представлял «трансгуманизм» как новую идеологию, «веру» для человечества, входящего в новую волну научно-технической революции. Близкие к Хаксли взгляды в это же время развивал генетик Джон Холдейн, физик Джон Десмонд Бернал и популяризировал писатель-фантаст Олаф Стэплдон. Крах надежд на появление реальных способов радикального изменения биологической природы человека быстро привёл к угасанию широкого интереса к идеям в этой области.
Первым на практике к перспективе усиления возможностей разума человека с помощью специальных устройств, разработанных на научной основе, подошёл русский изобретатель С. Н. Корсаков (1787—1853). В конце XIX века о дальнейшей эволюции человечества через преодоление ограничений человеческого тела, как о желанной перспективе, говорили, в частности, Фрэнсис Уиллард и Николай Фёдоров.
Современная волна научно-технической революции возрождает интерес к идеям трансгуманизма. Хаксли обращается к этой теме в 1957 году. (Этот год принято считать датой официального рождения термина «трансгуманизм».) В 1962 году выходят в свет работы Роберта Эттингера и Эвана Купера, положившие начало становлению крионики как практической области деятельности. В 1972 году Эттингер расширяет эти идеи в более широком трансгуманистическом контексте.
http://proza.ru/2023/10/25/1129
ВЫБИРАЮ СОК
Разум — это всё. Мышцы — не более чем куски резины. Я такой, какой есть, сформировался только благодаря мозгу.
Пааво Нурми
Соратники по движению! В 2026 году в России пройдут выборы в Государственную Думу РФ, всем трезвенным силам необходимо уже сейчас готовить кандидатов во всех регионах для выдвижения в Госдуму.
Наша активность особенно важна сейчас, когда возобновила свою деятельность так называемая ПЛП или "Партия любителей пива" политтехнолога Калачёва.
И вы, друзья, прекрасно понимаете необходимость выдвижения альтернативных ПЛП кандидатов. К слову, по поступившей информации, в ряды ПЛП вступили обэшники, члены движения "Общество.Будущее" москвича Юнемана и Саввы Федосеева... Если это так, то как тогда Роман Юнеман обоснует позиционирование себя как русского политика??
Уверен, что в этой судьбоносной для России борьбе в рамках избирательного законодательства на выборах в Госдуму РФ мы превзойдём по результатам ПЛП. Напомню Калачёву слова генерала от инфантерии Нечволодова о том, что путь к величию и достатку России неотделим от трезвого образа жизни, стремления к ЗОЖ.
Пиво - самый лёгкий путь к наркомании! Сегодня многие молодые люди, не зная правды о пиве, соблазняются агрессивной рекламой и вступают на скользкий (внешне такой привлекательный) путь к наркомании. В последнее время наркологи и собриологи говорят всё чаще о новой проблеме - повальном подростковом алкоголизме.
Отмечу, что наша партия уже начала подготовку к выборам, поиск потенциальных партнёров по коалиции.
Лично автор этих строк, писатель и морж Николае Карпати, намерен баллотироваться в Госдуму РФ по Адмиралтейскому району Петербурга, в котором находятся "Музей русской водки" и "1-я русская рюмочная", заведения с русофобскими названиями, недопустимыми в культурной столице Европы.
Иду в Госдуму с предложением начинать новую антиалкогольную кампанию с изъятием у россиян самогонных аппаратов, это важно.
Ведь мы не первые! До нас уже были индейцы.
Испанские конкистадоры победили индейцев, только когда научили их гнать самогон. Командование пожертвовало ради этого даже запасом ружей! Их стволы "подарили" индецам в виде самогонных аппаратов. Итог спаивания целого народа желающие могут наблюдать в США - бывшие хозяева континента живут на земле своих предков в резервациях, куда на них, как в зоопарк, ходят смотреть туристы.
И ещё, считаю, что в репертуарах театров России обязательно должны быть пьесы Вампилова и "Маленькие трагедии" Пушкина, по прежнему подтверждаю своб готовность сыграть роль Председателя Вальсингама из "Пира во время чумы".
Считаю, друзья, что нашими союзниками могут быть левые и социалистические партии, такие как КПРФ и "Коммунисты России" (по спискам партии баллотировавшегося на пост губернатора Петербурга Малинковича, с которым лично знаком и участвовал в пикете против презентации в Питере лиса-наркомана одной англосаксонской художницы, шёл в 2016 на выборы в ЗакС и Парламент Ленобласти, тогда пикетировал Горизбирком с плакатом "ГИК! РЕГИСТРИРУЙ ТОЛЯНА!").
ПРОТИВ ПАРТИИ ЛЮБИТЕЛЕЙ ПИВА
"В русском характере столько положительности и трезвости взгляда...", - Фёдор Достоевский
В России возродили Партию любителей пива (ПЛП), существовавшую в стране с 1993 по 1998 год. Учредительный съезд политического объединения прошел в Москве в субботу, 5 октября, в гостинице «Монарх» в Москве. Приехали не все: 96 человек из регионов и 13 членов оргкомитета. Решение о создании партии приняли единогласно.
Наша партия намерена решительно противостоять на фронте информборьбы "Партии любителей пива" Калачёва (генеральный секретарь) и Гришина (председатель), рекомендую пить для здоровья Черноголовку 2 литра.
Всё это звенья одной цепи: возвращение рекламы "безалкогольного" пива "Балтика" во время футбольных матчей под эгидой РФС, попытки вернуть продажу пива на стадионы России и вот теперь учреждение ПЛП.
Убеждён, что есть кто-то, кто дирижирует всеми этими процессами. И этот неизвестный наносит ущерб курсу на народосбережение.
Особую опасность пиво представляет для молодёжи России. Напомню про недавние массовые отравления пивным напитком "Мистер Сидр".
Возмутительно, что называющий себя русским политиком москвич Роман Юнеман никак пока не прокомментировал сообщения, что в ПЛП намерены вступать члены организации "Общество. Будущее".
Спирт, который содержится в пиве, вызывает склейку эритроцитов, в результате чего закупориваются сосуды головного мозга, и, как следствие, - кислородное голодание мозга (гипоксия) и гибель клеток мозга - нейронов.
В своих книгах, журналистских расследованиях доказываю факт существования ЗАГОВОРА транснациональных наркобаронов и банкиров с целью создания на всём евразийском постсоветском пространстве рабовладельческой наркосистемы угнетения и дискриминации, с провозглашением марионеточных наркогосударств типа Косово. Для этого наркобаронам необходима дестабилизация ситуации прежде всего в России. Именно в ситуации нестабильности легче ввозить героин, создавать наркоподполье.
Петербург это прежде всего город А.С.Пушкина, Фёдора Достоевского, Сергея Есенина и других гениальных сынов России, которые своим словом боролись за здравый и сильный народ! В нашем городе были проведены первые трезвенные съезды православных врачей и активистов светских организаций. У нас воссияли такие светочи духовной трезвости как Иоанн Кронштадтский и Александр Рождественский, Иоанн Чуриков из Вырицы, Григорий Распутин...
Деятельность обществ трезвости поддерживал Столыпин. Наконец, именно в Петрограде единственный раз в нашей истории был подписан императором Николаем II Сухой закон в 1914 году, который принёс огромное благо стране.
А ведь шла Первая мировая война...
Борюсь своими мыслями и словом за начало в Российской Федерации новой антиалкогольной кампании как единственного достаточно кратковременного способа радикального увеличения рождаемости и оздоровления России.
Некоторые рекомендации Постоянной комиссии по вопросу об алкоголизме, состоящей при Русском обществе охранения народного здоровья (1914 год), которые упоминаются в произведении Анатолия Оброскова «Трезвый Петроград»:
Алкоголь в любом виде проявляет ядовитое действие на организм, парализуя все его клетки и ткани.
Алкоголь ни в каком разведении не может быть причислен к укрепляющим или питательным продуктам и не должен считаться необходимым или полезным для нормального организма.
Все отправления организма (питание, рост, размножение, физическая и умственная работа, самозащита от болезней или неблагоприятных физических влияний) протекают лучше при полной трезвости.
Ни теоретически, ни практически невозможно указать предельную дозу алкоголя или степень его разведения, которая была бы для организма безвредной.
Если у человека есть потребность в алкогольных изделиях, это указывает на недочёты в его физической или душевной жизни. Поощрение такой «потребности» является особенно рискованным и опасным.
Повторю, что эти выводы были сделаны Постоянной комиссией по вопросу об алкоголизме при Русском обществе охранения народного здравия в 1914 году.
Только трезвая Россия станет великой! Не кури, не бухай, не употребляй! Вступай в партию трезвая Россия!
http://proza.ru/2024/10/13/999
Свидетельство о публикации №225071600006