Механизм, сглаживающий последствия мутацийРазные способы отключения генов могут приводить к разным фенотипическим эффектам. Иногда подавление экспрессии гена («нокдаун») ведет к серьезному изменению фенотипа, в то время как мутанты, у которых тот же самый ген «нокаутирован» преждевременным стоп-кодоном (нонсенс-мутацией), имеют нормальный фенотип. Пытаясь разгадать этот парадокс, два исследовательских коллектива из Германии и Китая частично расшифровали неизвестный ранее механизм, повышающий устойчивость организмов к нонсенс-мутациям. Оказалось, что синтез матричных РНК, содержащих преждевременный стоп-кодон, через несколько промежуточных этапов (первым из которых является нонсенс-опосредованный распад РНК) ведет к повышению экспрессии генов, родственных испорченному нонсенс-мутацией. В результате в клетке синтезируются дополнительные белки, похожие на тот, чей ген был испорчен, что и позволяет частично или полностью скомпенсировать последствия нонсенс-мутации. В ходе эволюции живые существа выработали целый ряд механизмов для повышения устойчивости к различным помехам, в том числе — к постоянно возникающим случайным мутациям. К таким механизмам можно отнести регуляторные контуры с отрицательными обратными связями, белки-шапероны, помогающие мутантным белкам принять правильную трехмерную конфигурацию, дублирование функций белок-кодирующих и регуляторных последовательностей, что порождает кажущуюся «генетическую избыточность». Но каким образом нонсенс-мутация в одном гене приводит к активации экспрессии других генов, родственных нокаутированному? Оба исследовательских коллектива работали с рыбками данио-рерио, а один из них (M. A. El-Brolosy et al.) — также с культурами мышиных клеток. Чтобы найти связующие звенья между нокаутом гена и активацией экспрессии родственных генов, обе группы провели множество экспериментов с широким кругом генов и мутаций, вызывающих (или не вызывающих) генетический компенсаторный ответ (GCR). Результаты, полученные на многих разных генах (и рыбьих, и мышиных), оказались схожими. В частности, китайский коллектив работал с геном capn3a. Если у эмбрионов данио-рерио заблокировать транскрипцию или трансляцию этого гена, не меняя сам ген, то есть осуществить нокдаун, то получаются рыбки с недоразвитой печенью. Однако печень нормально развивается у нокаутных рыбок capn3a;14/;14, у которых из первого экзона гена capn3a вырезан кусок длиной в 14 нуклеотидов, что приводит к появлению преждевременного стоп-кодона. Оказалось, что у нокаутных эмбрионов резко повышен (по сравнению и с «нокдаунными», и с обычными, контрольными эмбрионами) уровень экспрессии нескольких генов, родственных испорченному, в том числе capn8 и capn12. Дополнительные эксперименты подтвердили, что это типичный пример GCR. Именно наличие нонсенс-мутации в гене capn3a, при обязательном условии присутствия считанных с мутантного гена матричных РНК, но не само по себе отсутствие функционального белка Capn3a (которого нет ни у нокаутных, ни у нокдаунных рыбок), стимулирует экспрессию родственных генов capn8 и capn12. Повышенная активность родственных генов сводит на нет негативные последствия нонсенс-мутации. Установив эти факты, исследователи стали экспериментировать с другими мутациями гена capn3a. Оказалось, что GCR наблюдается только в тех случаях, когда мутация приводит к появлению преждевременного стоп-кодона в любом экзоне, кроме последнего. Это наводит на мысль об участии механизма NMD, потому что нонсенс-опосредованный распад мРНК включается как раз при наличии преждевременного стоп-кодона в любом экзоне, кроме последнего. Механизм NMD срабатывает, когда рибосома, осуществляющая трансляцию мРНК, прекращает свою работу на стоп-кодоне, не дойдя до группы белков, которые в ходе сплайсинга прикрепляются к мРНК в местах сращивания экзонов. Аналогичные результаты дали и эксперименты с другими генами, в том числе с геном nid1a, нокдаун которого ведет к уменьшению длины тела данио-рерио, а нонсенс-мутации дают нормальный фенотип благодаря GCR (потому что повышается экспрессия родственных генов nid1b и nid2a). Гипотеза об участии системы NMD в генетическом компенсаторном ответе была подтверждена дальнейшими экспериментами. В частности, оказалось, что GCR сходит на нет, если подавить экспрессию некоторых генов, участвующих в NMD — в особенности гена upf3a. Результаты по еще одному вовлеченному в NMD гену, upf1, у двух исследовательских групп получились разные: то ли этот ген важен для GCR (M. A. El-Brolosy et al.), то ли не очень (Z. Ma et al.). Полученные результаты важны как в теоретическом, так и в практическом плане. С одной стороны, они показывают, насколько неполны до сих пор наши знания и о регуляции экспрессии генов, и о механизмах устойчивости к мутациям. Кроме того, они объясняют, почему разные способы отключения одних и тех же генов могут давать разные результаты на уровне фенотипа. Это важно учитывать при планировании молекулярно-генетических экспериментов. Например, если мы хотим нокаутировать ген, чтобы выяснить его функцию, то нужно позаботиться о том, чтобы не сработал нонсенс-опосредованный компенсаторный ответ. Ведь иначе можно принять важный ген за «функционально избыточный» только потому, что эволюция сумела создать компенсаторный механизм, позволяющий справляться с некоторыми (но не любыми) его поломками. Наконец, исследование заставляет по-новому взглянуть на эволюционную роль генных дупликаций, благодаря которым в геномах эукариот присутствует так много семейств родственных генов (паралогов). Даже если паралоги давно поделили между собой функции и в норме работают в разных тканях и на разных стадиях развития, они, как выясняется, при необходимости могут привлекаться для «затыкания дырок» в других молекулярных системах, поврежденных мутациями, тем самым повышая помехоустойчивость организма. https://elementy.ru/novosti_nauki/433459/Rasshifrovan_mekhanizm_sglazhivayushchiy_posledstviya_nonsens_mutatsiy © Copyright: Сибирская Хиджра, 2019.
Другие статьи в литературном дневнике:
|