Черная дыра галактики M87 портрет в интерьереРис. 1. «Портрет» сверхмассивной черной дыры, расположенной в центре галактики M87, полученный участниками коллаборации Event Horizon Telescope на основе наблюдений, проводившихся в апреле 2017 года на длине волны 3 мм. Светящееся кольцо — излучение от аккреционного диска вокруг черной дыры, «тень» от которой мы видим как темное пятно в центре. Отсутствие светлой полосы, пересекающей область «тени» (которая, например, показана в кадрах с черной дырой Гаргантюа в фильме «Интерстеллар»), объясняется тем, что плоскость аккреционного диска почти перпендикулярна лучу зрения. Ровно через два года члены коллаборации обнародовали финальные результаты анализа наблюдений галактики М87. В частности, они представили широкой общественности эффектное изображение «тени» черной дыры в ее центре (рис. 1). Одновременно с этим Astrophysical Journal Letters выложил в открытый доступ шесть статей, содержащих полученные данные и описание методов их обработки (ссылки на статьи можно найти в кратком резюме Ш. Дулемана, предваряющем публикацию результатов). В первой из этих статей представлены ключевые итоги наблюдений этой дыры 5, 6, 10 и 11 апреля 2017 года. Они включают несколько графических реконструкций ее тени, полученных с помощью специально адаптированных алгоритмов. Остальные статьи посвящены техническим деталям проекта и анализу теоретических моделей, которыми пользовались для анализа полученных результатов. Отчет о мониторинге черной дыры из центра Млечного Пути будет обнародован позже. Короткий ролик, подготовленный командой Event Horizon Telescope, в котором объясняются основные принципы наблюдений за сверхмассивными черными дырами. На пресс-конференции в Вашингтоне, которую я смотрел в онлайне, одному из докладчиков задали вопрос: приведут ли полученные результаты к прогрессу в исследовании темной материи и решении прочих основных вопросов науки о Вселенной? Ответ был однозначно отрицательным, и с этим не поспоришь. Эти результаты — триумф не только новейших методов радиоастрономических наблюдений и анализа информации, но и социальной и информационной организации крупномасштабных исследовательких проектов. Однако они практически ничем не обогатили (точнее, пока не обогатили) наше понимание основ физики Космоса (и вообще фундаментальной физики). Опубликованные изображения отнюдь не стали долгожданным доказательством существования черных дыр — оно давно не подвергается сомнениям. Члены коллаборации EHT получили именно то, что и намеревались получить с самого начала (вернее, — то, что было предсказано общей теорией относительности, физикой релятивистской плазмы, радиофизикой и другими релевантными областями научного знания). Это обстоятельство, конечно, ни в коей мере не снижает значительности их трудов и достижений. И можно не сомневаться, что развитие проекта EHT обещает множество ценнейших результатов — возможно, совершенно неожиданных. Новые исследовательские технологии всегда расширяют горизонты науки. Шварцшильдовская черная дыра характеризуется всего одним параметром — массой. Она могла бы образоваться в результате гравитационного коллапса невращающейся массивной звезды. Таких звезд практически не бывает, поэтому реальные постколлаптические черные дыры обладают еще и угловым моментом. Следует отметить, что такие слияния происходят (хотя и чрезвычайно редко) и в нашу эпоху благодаря столкновениям галактик. Например, в сентябре 2017 года появилось сообщение, что в центре открытой в 1830 году спиральной галактики NGC 7674 в созвездии Пегаса, отдаленной от Млечного пути на 400 миллионов световых лет, имеются две черные дыры общей массой 40 миллионов солнечных. Они обращаются вокруг общего центра на расстоянии в один световой год друг от друга, совершая один оборот за 100 тысяч лет. Это свидетельствует о том, что NGC 7674 возникла в ходе столкновения двух галактик-предшественниц. Со временем эти дыры сольются в одну черную дыру, объединив и массы, и угловые моменты. Черная дыра — это не вещество и не излучение. Можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, которая называется горизонтом событий. Для шварцшильдовской дыры горизонт — это правильная сфера, а у дыры Керра она сплюснута у полюсов. Физический смысл горизонта очень нагляден. Световой сигнал, посланный с его внешней окрестности, еще может (правда, не всегда) уйти на бесконечно далекую дистанцию. А вот сигналы, отправленные из внутренней области, обречены там и оставаться. Горизонт — это пространственная граница между событиями, которые могут стать известными внешним наблюдателям, и событиями, информация о которых ни при каком раскладе не выйдет наружу. А теперь самое главное. Метрика искривленного пространства-времени вне горизонта черной дыры определяет как движение материальных тел, так и распространение электромагнитных волн. Поэтому ее можно изучать, наблюдая за орбитами этих тел и путями световых лучей в окрестности дыры. Такие наблюдения, в частности, позволяют отследить и горизонт событий. Именно это и сделали участники коллаборации EHT. Очень далеко от горизонта тяготение дыры практически не искажает псевдоевклидову метрику пространства-времени, предписанную специальной теорией относительности. Однако при приближении к дыре начинаются сюрпризы. Допустим, что где-то в пространстве находится наблюдатель с лазерным излучателем, генерирующим остронаправленный луч света. Если он расположен далеко от дыры (расстояние до нее многократно превышает поперечник горизонта), то испущенный луч уйдет в бесконечность по прямому пути в любых направлениях, за исключением тех, что лежат внутри телесного угла, под которым наблюдатель видел бы горизонт, если бы тот был твердым телом. При приближении наблюдателя к горизонту этот угол расширяется за его пределы и в конце концов охватывает все пространство. Это означает, что фотоны, испущенные поблизости от горизонта, либо уйдут на бесконечность по заметно искривленному пути, либо поглотятся дырой. В этом и проявляется одна из главных особенностей искривленного пространства-времени вокруг черной дыры. Всё сказанное означает, что сверхмассивные черные дыры в центрах галактик можно исследовать как с помощью радиотелескопов, так и посредством инфракрасной, оптической и рентгеновской аппаратуры. Интересно, что ожидаемый результат давно известен. Еще в 1979 году французский астрофизик Жан-Пьер Люмине показал, что для отдаленного наблюдателя поверхность поглощения фотонов должна выглядеть тонким светящимся кольцом (причем, асимметричным — с участками различной яркости), расположенным внутри аккреционного диска. Это кольцо сформировано из фотонов, которым удалось покинуть круговую (напомню, нестабильную!) орбиту вокруг дыры и уйти в пространство. Искривление световых лучей вблизи горизонта приводит к появлению внутри кольца более или менее сферического темного пятна — «тени» черной дыры. Именно эта структура и видна на снимке, обнародованном 10 апреля. Рис. 2. Симуляция внешнего вида черной дыры и окружающего ее аккреционного диска, выполненная в 1979 году Ж.-П. Люмине. Удивительно, что она почти во всех деталях совпадает с более поздними симуляциями и, как мы теперь узнали, хорошо согласуется с тем, что получила коллаборация EHT. И она весьма информативна. Теория указывает, что радиус кольца пропорционален радиусу поглощения фотонов, который в первую очередь зависит от массы черной дыры. Это позволяет достаточно точно оценить массу дыры. Именно это и проделали участники коллаборации EHT. Согласно их заключению, она в 6,5 ± 0,7 миллиардов раз превышает массу Солнца. Конечно, опубликованное изображение окрестностей черной дыры, — не настоящая фотография, а результат компьютерной реконструкции на основе информации, полученной от системы радиотелескопов (рис. 3). Участники коллаборации EHT вели наблюдения на волне длиной 1,3 мм в восьми обсерваториях, расположенных в Чили (APEX и ALMA), на Гавайских островах (SMA и JCMT), в Мексике (LMT), Испании (PV), в Аризоне (SMT) и на Южном полюсе (SPT). Эти инструменты образовали интерферометрическую систему со сверхдлинной базой, которая обеспечила угловое разрешение в 20 микросекунд (естественно, дуговых). Этого оказалось достаточно и для реконструкции изображения тени черной дыры и ее плазменного окружения, и для определения ее массы. К слову, вычисленный угловой размер кольца (40–45 дуговых микросекунд) в два с половиной раза превышает раствор угла, под которым объект величиной в 38 миллиардов километров (именно таков диаметр горизонта событий этой дыры) был бы виден на Земле с расстояния в 55 миллионов световых лет, отделяющем нас от галактики М87. Это означает, что и кольцо, и темная тень дыры наблюдаются на Земле с заметным увеличением, которое возникло благодаря сильному изгибанию лучей вблизи горизонта (это так называемый эффект гравитационного линзирования). Рис. 3. Расположение телескопов, участвовавших в наблюдениях в 2017 году. Сплошными линиями соединены пары телескопов, способных одновременно наблюдать галактику M87. Наверное, стоит представить читателю эллиптическое (вернее, почти сферическое) звездное скопление, которое имеет честь содержать ставшую знаменитой дыру. А оно того заслуживает. 18 марта 1771 года астроном французского военно-морского флота Шарль Мессье открыл его и занес под 87-м номером в свой знаменитый каталог туманностей и звездных скоплений, опубликованный десятью годами позже. Отсюда и название Мессье 87 — или, сокращенно, М87 (рис. 4). Рис. 4. Эллиптическая галактика M87 (вверху слева) находится почти в центре скопления Девы и является одной из самых массивных галактик в нем; фото с сайта apod.nasa.gov. Вверху справа — увеличенная центральная часть снимка, на которой хорошо заметен джет, бьющий из центра галактики. Внизу — общий вид центральной части скопления Девы, галактика M87 — это крупное продолговатое пятно чуть ниже и левее центра изображения. Эта галактика относится к довольно редкому семейству cD, куда входят особо яркие галактики, которые встречаются лишь неподалеку от центральных областей плотных галактических скоплений (М87 расположена в центре скопления Девы). Ее диаметр приблизительно равен поперечнику диска Млечного Пути, но масса больше на два порядка. Ее ядро проявляет весьма высокую активность, генерируя мощные излучения различных частот, хотя и не дотягивает до уровня квазаров. Из ядра исходит исполинский джет протяженностью порядка пяти тысяч световых лет, который еще в 1918 году заметил Гебер Кертис из принадлежащей Калифорнийскому университету Ликской обсерватории. Кстати, термина «джет» в те времена не существовало, его придумали американские астрономы Вальтер Бааде и Рудольф Минковский в 1954 году. В общем, это отнюдь не рядовой обитатель ближних окрестностей нашей Галактики. И последнее. Жан-Пьеру Люмине для симуляции визуального образа черной дыры в середине геометрически тонкого и оптически плотного аккреционного диска потребовались относительно скромные компьютерные ресурсы. Для портретирования реальной черной дыры в аккреционном диске галактики М87 коллаборация EHT использовала петабайтный объем первичной информации. Таковы масштабы современной многоканальной астрономии. А то ли еще будет. https://elementy.ru/novosti_nauki/433463/Chernaya_dyra_galaktiki_M87_portret_v_interere © Copyright: Сибирская Хиджра, 2019.
Другие статьи в литературном дневнике:
|