Сегодня, 13 июля, в 15:31 по московскому времени с космодрома Байконур была запущена космическая обсерватория «Спектр-РГ» (см. прямую трансляцию запуска, сам запуск — с 60-й минуты). Это без преувеличения важнейшее астрономическое событие, тем более что в ближайшие несколько лет другие рентгеновские миссии не планируются. Запуск откладывался дважды, но наконец всё прошло успешно. На борту «Спектра-РГ» установлены два дополняющих друг друга рентгеновских телескопа: немецкий eROSITA и российский ART-XC. Вместе они позволяют вести наблюдения в диапазоне энергий от 0,2 до 30 кэВ. Широкое поле зрения обоих телескопов послужит для решения основной научной задачи миссии — составления детального обзора неба в рентгеновском диапазоне. На нее отведены первые 4 года из расчетных 6,5 лет работы обсерватории. Ученые надеются, что обзор позволит открыть десятки тысяч новых скоплений галактик и существенно уточнить наше понимание строения и эволюции крупномасштабной структуры Вселенной.
Запуск рентгеновской обсерватории «Спектр-РГ» — не просто ожидаемое, но и долгожданное событие. Перспективность отправки в космическое пространство платформы с телескопами, работающими в диапазонах мягкого и жесткого рентгена, была понята еще три десятка лет назад. Проект шеститонной станции с четырьмя рентгеновскими телескопами, двумя телескопами УФ-диапазона и детектором гамма-всплесков был разработан в первой половине 1990-х годов, и его предполагали воплотить в жизнь под эгидой «Роскосмоса» с широким международным участием. Однако по ряду причин (в том числе, хотя и не только, в связи с недостаточным финансированием российских космических исследований) назначенный на 1999 год запуск обсерватории на высокоэллиптическую околоземную орбиту был аннулирован.
«Спектр-РГ» намного скромнее. Он весит меньше трех тонн (2730 кг) и несет два телескопа, немецкий eROSITA и российский ART-XC. Однако, в отличие от несостоявшегося предшественника, он будет работать не в околоземном, а в околосолнечном пространстве (будет спутником не Земли, а Солнца). Конечной целью станции станут окрестности второй точки Лагранжа системы «Солнце — Земля», расположенной с внешней стороны земной орбиты. Эта локация не только обеспечит эффективный круглосуточный обзор всего небосвода, но также позволит избавиться от любых помех, возможных на околоземной орбите.
*Точки Лагранжа
Пять точек Лагранжа — следствие решения одной из ограниченных версий классической задачи небесной механики о движении в пустом пространстве трех тел, связанных силами тяготения. В данном случае ограничение заключается в том, что масса одного из тел пренебрежимо мала относительно масс двух других. Это означает, что массивные тела А и В чувствуют притяжение друг друга, но не притяжение третьего тела С. Поэтому тела А и В движутся в одной и той же плоскости по замкнутым или разомкнутым траекториям, причем в первом случае они описывают эллиптические орбиты вокруг общего центра масс (барицентра). В 1772 году Жозеф Луи Лагранж показал, что если массивные тела описывают правильные окружности с одной и той же угловой скоростью, то в их орбитальной плоскости найдутся пять точек, в которых тело С сможет двигаться, не изменяя положения относительно тел А и В. Точки L1, L2 и L3, которые за пять лет до Лагранжа уже нашел Леонард Эйлер, лежат на линии, проходящей через массивные тела А и В. Точки L4 и L5 расположены в вершинах двух опрокинутых друг относительно друга равносторонних треугольников, построенных на соединяющем эти тела отрезке.
Физическая причина сохранения расположения тел А, В и С состоит в том, что в точках Лагранжа равнодействующая сил ньютоновского притяжения тела С телами А и В полностью уравновешивается его инерцией (или, если использовать вращающуюся систему отсчета, действующей на него центробежной силой). Положение тела С в четвертой и пятой точках Лагранжа является устойчивым, если отношение масс тел А и В превышает число 25, что с огромным запасом выполняется для системы «Солнце — Земля». Движение в первой, второй и третьей точках Лагранжа неустойчиво, но находящийся там космический аппарат может сохранить свою позицию с помощью корректирующих двигателей.
Точка L2, куда направляется «Спектр-РГ», находится с внешней стороны орбиты Земли на расстоянии около полутора миллионов километров от нее. К ней уже были запущены несколько космических обсерваторий, в том числе WMAP и Planck. Туда же в марте 2021 года НАСА предполагает послать и космический телескоп имени Джеймса Уэбба.
Немецкий телескоп предназначен для наблюдений в диапазоне 0,2–12 кэВ, российский — на участке рентгеновского спектра между 5 и 30 кэВ. Их поля зрения равны, соответственно, одному градусу и 34 угловым минутам, а угловое разрешение — пятнадцати секундам и приблизительно одной минуте. Уступая партнеру из ФРГ в чувствительности и площади обзорного поля, российский инструмент значительно превосходит его и по ширине спектра регистрируемых фотонов, и по его верхней границе. Оба телескопа удачно дополняют друг друга — в полном соответствии с целями обсерватории.
В чем же заключаются эти цели? Полная протяженность спектра электромагнитных волн, освоенных сегодняшней астрономией, составляет примерно 70 октав (частоты двух волн отличаются на октаву, если их отношение равно 2; отношение длин этих волн равно 1/2, из чего следует, что длина волны самого низкочастотного радиоизлучения, доступного современным радиотелескопам, примерно в 270 раз больше, чем длина волны самого высокочастотного регистрируемого гамма-излучения). Если относить, как обычно делают астрофизики, к рентгеновскому диапазону фотоны с энергиями от 0,1 кэВ до 100 кэВ, то на него придется почти 10 октав. Если кому-то кажется, что этого мало, напомню, что оптический диапазон астрономических наблюдений на длинах волн от 400 до 760 нанометров полностью укладывается в одну октаву. Но главное не в этом. Рентгеновские фотоны доносят до Земли информацию о великом множестве процессов, представляющих исключительный интерес для всего комплекса наук о Вселенной — астрономии, астрофизики и космологии. Причем отнюдь не только процессов с участием таких космических экстремалов, как аккреционные диски вокруг нейтронных дыр и сверхмассивных черных дыр или остатки от взрывов сверхновых! Так, в рентгеновских лучах наблюдаются как все разновидности протозвезд, так и «недоделанные» звезды с относительно холодными атмосферами — коричневые карлики. Зарегистрировано рентгеновское излучение от таких неожиданных источников, как Венера, Марс, Юпитер, Сатурн и даже Луна. Но все же основными целями рентгеновской астрономии являются объекты и процессы с очень горячими и потому сильно ионизированными газами и потоками заряженных частиц высоких энергий: взрывы сверхновых звезд и порожденные ими разлетающиеся облака космической плазмы, падение (аккреция) вещества на нейтронные звезды и черные дыры, аннигиляция частиц и античастиц и нагретые до миллионов кельвинов газы, заполняющие пространство внутри галактических скоплений.
Наблюдения в X-лучах, как их назвал сам Вильям Конрад Рентген и как их до сих пор именуют в англоязычной литературе, имеют еще одно ценнейшее преимущество. Кванты жесткого рентгена с энергиями выше 15–20 кэВ отличаются высокой проникающей способностью. Это означает, что они не только доносят информацию о компактных космических объектах, сильно экранированных пылевыми и газовыми оболочками, но также почти без потерь путешествуют на самые дальние космические расстояния. Поэтому они служат отличными инструментами как для «просвечивания» ранней Вселенной, Вселенной первых звезд, первых черных дыр и первых галактик, так и для отслеживания динамики космических структур на более поздних этапах. А это уже область прямых интересов науки о возникновении и эволюции Вселенной — космологии.
И вот тут мы подошли к самому главному — если угодно, к моменту истины. Космология, превратившись в нашем столетии в точную науку, обрела совершенно новые цели. Во второй половине прошлого века космологи почитали главной задачей измерение нынешнего значения параметра Хаббла и возможно более точную оценку энергетического баланса Вселенной. Знание этих величин дает возможность на основе уравнений космологической модели Фридмана — Леметра (которая базируется на общей теории относительности) установить возраст Вселенной, выяснить геометрию пространства, определить скорость его расширения в нашу эпоху и ее изменения почти до начала мироздания. Эта исследовательская программа стала особенно актуальной в последние годы двадцатого столетия, когда открытие ускоряющегося расширения пространства заставило ввести в эти уравнения дополнительный член, получивший название темной энергии.
А затем, буквально на наших глазах, всё изменилось. Прецизионные промеры спектра микроволнового реликтового излучения, выполненные приборами космических зондов WMAP и Planck, позволили уже к 2013 году точно определить (а в течение следующего пятилетия — еще и «отполировать») все численные параметры, необходимые для надежного статистического моделирования динамики Большого Космоса. Оказалось, что их нужно не так уж много: в минимальном варианте, всего шесть. На этой основе была построена удивительно красивая теория мироздания, известная как Стандартная космологическая модель (по аналогии со Стандартной моделью элементарных частиц). У нее есть и техническое название the Lambda Cold Dark Matter cosmological model of the Universe (сокращенно — ;CDM-модель). Она дает возможность просчитать (конечно, не вручную, а с помощью весьма сложных компьютерных программ) различные варианты эволюции Вселенной, зависящие от того или иного выбора численных значений космологических параметров, и на этой основе уточнить их значения, сравнивая модельные симуляции с результатами астрономических наблюдений. В общем, ;CDM по значению и перспективам дальнейшего развития и использования можно сравнить с выведенным Эрвином Шредингером основным уравнением квантовой механики.
Финализация ;CDM радикально повлияла на осмысление будущих задач и возможностей космологии (точнее, теперь уже скорее гибрида космологии и астрофизики). Сейчас она нацелена на понимание трансформации Вселенной из очень простого (если угодно, примитивного) начального состояния к сегодняшнему разнообразию галактик и их скоплений, обладающих различной морфологией, светимостью и спектральными характеристиками. В сферу интересов сегодняшней космологии входят рождение и эволюция звезд, звездный нуклеосинтез, свойства межзвездной и межгалактической среды и многое другое — причем как в нашу эпоху, так и на предшествующих стадиях существования Вселенной.
Для решения этих задач как раз и предназначен «Спектр-РГ». Если не случится никаких накладок, то за первые четыре года работы он проведет беспрецедентный по чувствительности и степени разрешения (как углового, так и энергетического) восьмиэтапный обзор всего небосвода в диапазоне 0,3–11 кэВ. Ожидается, что он обнаружит несколько десятков тысяч (возможно, даже сотню тысяч) скоплений галактик, что даст бесценную информацию о крупномасштабной структуре Вселенной. Потом еще два с половиной года он будет заниматься прицельным наблюдением отдельных космических объектов, выбранных на основе результатов обзора, причем в это время будут регистрироваться фотоны с энергиями вплоть до 30 кэВ. Предполагается, что в сферу его интересов войдут не только активные ядра галактик общим числом порядка трех миллионов (включая и возникшие менее чем через миллиард лет после Большого Взрыва), но и звезды с нетривиальной рентгеновской светимостью в нашей Галактике, в том числе и в окрестностях Солнца. Можно надеяться, что он также обнаружит немало редких и потому непредсказуемых событий, связанных с интенсивным рождением рентгеновских квантов. Очень важно, что обсерватория заглянет далеко за красное смещение z = 0,64, при котором начала доминировать темная энергия и потому замедляющееся расширение Вселенной сменилось на ускоренное. В общем, много чего она сможет!
Первый и пока последний тотальный рентгеновский обзор небосвода выполнила немецкая обсерватория ROSAT, выведенная на круговую околоземную орбиту 1 июня 1990 г. Это был очень успешный проект, осуществленный с участием США и Британии. Хотя плановая продолжительность ее наблюдений составляла всего полтора года, обсерватория проработала вплоть до февраля 1999 года. В ходе обзора, проведенного в диапазоне от 0,1 до 2,4 кэВ, она зарегистрировала свыше ста тридцати тысяч далеких источников рентгеновского излучения и провела ряд других наблюдений. В частности, через четыре недели после запуска она сделала рентгеновский снимок лунной поверхности (рис. 2). «Спектр-РГ» многократно превосходит ROSAT и по чувствительности, и по ширине рентгеновского диапазона, доступного его телескопам.
Стоит отметить, что рентгеновские (как и оптические) обзоры делают и другим способом — по так называемой методике глубоких полей (deep field surveys). В этом случае телескоп на протяжении длительного времени следит за небольшим участком небосвода — прежде всего, с целью регистрации аномально тусклых и потому очень далеких источников. Так, запущенная ровно два десятилетия назад (23 июля 1999 года) и благополучно действующая и поныне американская орбитальная обсерватория Chandra выполнила рекордный по продолжительности глубокий обзор участка южного небосвода площадью 454 квадратные дуговые минуты в трех участках мягкого рентгена, затратив на него в общей сложности 48 суток. Этот обзор, Chandra Deep Field South, предоставил ценнейшие результаты. Например, было зарегистрировано свыше трех сотен новых рентгеновских источников, включая активные ядра галактик на дистанциях в 8–9 миллиардов световых лет от Земли. Также был открыт рекордно далекий от нашей Галактики (естественно, на тот момент) квазар с красным смещением 3,7, что соответствует расстоянию в 12 миллиардов световых лет. Однако у «Спектра-РГ» совсем другие задачи. Пожелаем ему всех и всяческих успехов!
"Элементы" 13.07.2019
Мы используем файлы cookie для улучшения работы сайта. Оставаясь на сайте, вы соглашаетесь с условиями использования файлов cookies. Чтобы ознакомиться с Политикой обработки персональных данных и файлов cookie, нажмите здесь.